Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an alg...Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the 'core' pixels were extracted to represent the most possible burned pixels based on the comparison of the tem- poral change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the 'core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the hiehest accuracy of 96.61%.展开更多
基金Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academic Sciences(No.XDA05090310)
文摘Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and cli- mate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the 'core' pixels were extracted to represent the most possible burned pixels based on the comparison of the tem- poral change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre- and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the 'core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre- and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the hiehest accuracy of 96.61%.