A newgeneration of solar spectroradiometer has been developed by CUST/JRSI to improve solarirradiance observation data under hyperspectral resolution. It is based on the grating spectroradiometer with a back-thinned C...A newgeneration of solar spectroradiometer has been developed by CUST/JRSI to improve solarirradiance observation data under hyperspectral resolution. It is based on the grating spectroradiometer with a back-thinned CCD linear image sensor and is operated in a hermetically sealed enclosure. The solar spectroradiometer is designed to measure the solar spectral irradiance from300 nm to 1100 nm wavelength range with the spectral resolution of 2 nm( the full width at half maximum). The optical bench is optimized to minimize stray light. The Peltier device is used to stabilize the temperature of CCD sensor to 25℃,while the change of temperature of CCD sensor is controlled to ±1℃ by the dedicated Peltier driver and control circuit.展开更多
Pendjari Biosphere Reserve(PBR),a primary component of the W-Arly-Pendjari transboundary biosphere reserve,represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa.This savannah ecosy...Pendjari Biosphere Reserve(PBR),a primary component of the W-Arly-Pendjari transboundary biosphere reserve,represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa.This savannah ecosystem has long been affected by fire,which is the main ecological driver for the annual rhythm of life in the reserve.Understanding the fire distribution patterns will help to improve its management plan in the region.This study explores the fire regime in the PRB during 2001–2021 in terms of burned area,seasonality,fire frequency,and mean fire return interval(MFRI)by analysing moderate resolution imaging spectroradiometer(MODIS)burned area product.Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season(November–December).The last two fire seasons(2019–2020 and 2020–2021)recorded the highest areas burned in the PBR out of the twenty fire seasons studied.During the twenty years period,8.2%of the reserve burned every 10–11 months and 11.5%burned annually.The largest part of the reserve burned every one to two years(63.1%),while 8.3%burned every two to four years,5.8%burned every four to ten years,and 1.9%burned every ten to twenty years.Only 1.3%of the entire area did not fire during the whole study period.Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%.The MFRI(MFRI<2.00 a)was low in grasslands,shrub savannah,tree savannah,woodland savannah,and rock vegetation.Fire regime must be maintained to preserve the integrity of the PBR.In this context,we suggest applying early fire in tree and woodland savannahs to lower grass height,and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes.We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth.Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.展开更多
随着上海港海上运输业和石油产业链的日趋发达,海上溢油事故风险也随之加剧。本文就2012年发生在上海海域吴淞口和九段沙附近的2起重大溢油事故,基于美国NASA(National Aeronautics and Space Administration)中等分辨率MODIS(Moderate-...随着上海港海上运输业和石油产业链的日趋发达,海上溢油事故风险也随之加剧。本文就2012年发生在上海海域吴淞口和九段沙附近的2起重大溢油事故,基于美国NASA(National Aeronautics and Space Administration)中等分辨率MODIS(Moderate-resolution Imaging Spectroradiometer)与国产"环境一号"卫星HJ-1的多源卫星数据,对溢油信息进行对比,通过对油水敏感通道进行波段比值运算,突出油膜与背景海水的光谱反射率差异,再结合重柴油光谱特征,利用图像分割的阈值确定法,从疑似溢油区域中有效提取溢油信息,实现溢油区域定位、溢油面积和溢油量的诊断,为事发后海域应急响应工作提供基础性分析依据。展开更多
China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this pap...China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.展开更多
室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪...室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪器组成。测量架半径为2m,主要由天顶弧轨道、方位圆轨道、伺服电机、PLC组成。光谱仪器包括一台亮度计和一台照度计,亮度计测量反射亮度,被固定在测量架小车平台上,照度计测量入射照度。两台光谱仪器采用相同的平场凹面光栅分光、线阵列探测器探测。光谱测量范围为400~2500nm,光谱分辨率为3.5nm(400~1000nm)、12nm(1000~2500nm)。系统在工控机的控制下完成自动测量。在自动默认状态下测量周期大约为10min。展开更多
基金supported from Meteorology Industry Research Special Funds for Public Welfare Projects (GYHY201406037)
文摘A newgeneration of solar spectroradiometer has been developed by CUST/JRSI to improve solarirradiance observation data under hyperspectral resolution. It is based on the grating spectroradiometer with a back-thinned CCD linear image sensor and is operated in a hermetically sealed enclosure. The solar spectroradiometer is designed to measure the solar spectral irradiance from300 nm to 1100 nm wavelength range with the spectral resolution of 2 nm( the full width at half maximum). The optical bench is optimized to minimize stray light. The Peltier device is used to stabilize the temperature of CCD sensor to 25℃,while the change of temperature of CCD sensor is controlled to ±1℃ by the dedicated Peltier driver and control circuit.
基金partly supported by the Royal Belgian Institute of Natural Sciences (RBINS) under the CEBios Program in Benin.
文摘Pendjari Biosphere Reserve(PBR),a primary component of the W-Arly-Pendjari transboundary biosphere reserve,represents the largest intact wild ecosystem and pristine biodiversity spot in West Africa.This savannah ecosystem has long been affected by fire,which is the main ecological driver for the annual rhythm of life in the reserve.Understanding the fire distribution patterns will help to improve its management plan in the region.This study explores the fire regime in the PRB during 2001–2021 in terms of burned area,seasonality,fire frequency,and mean fire return interval(MFRI)by analysing moderate resolution imaging spectroradiometer(MODIS)burned area product.Results indicated that the fire season in the PBR extends from October to May with a peak in early dry season(November–December).The last two fire seasons(2019–2020 and 2020–2021)recorded the highest areas burned in the PBR out of the twenty fire seasons studied.During the twenty years period,8.2%of the reserve burned every 10–11 months and 11.5%burned annually.The largest part of the reserve burned every one to two years(63.1%),while 8.3%burned every two to four years,5.8%burned every four to ten years,and 1.9%burned every ten to twenty years.Only 1.3%of the entire area did not fire during the whole study period.Fire returned to a particular site every 1.39 a and the annual percentage of area burned in the PBR was 71.9%.The MFRI(MFRI<2.00 a)was low in grasslands,shrub savannah,tree savannah,woodland savannah,and rock vegetation.Fire regime must be maintained to preserve the integrity of the PBR.In this context,we suggest applying early fire in tree and woodland savannahs to lower grass height,and late dry season fires every two to three years in shrub savannah to limit the expansion of shrubs and bushes.We propose a laissez-faire system in areas in woodland savannah where the fire frequency is sufficient to allow tree growth.Our findings highlight the utility of remote sensing in defining the geographical and temporal patterns of fire in the PBR and could help to manage this important fire prone area.
文摘随着上海港海上运输业和石油产业链的日趋发达,海上溢油事故风险也随之加剧。本文就2012年发生在上海海域吴淞口和九段沙附近的2起重大溢油事故,基于美国NASA(National Aeronautics and Space Administration)中等分辨率MODIS(Moderate-resolution Imaging Spectroradiometer)与国产"环境一号"卫星HJ-1的多源卫星数据,对溢油信息进行对比,通过对油水敏感通道进行波段比值运算,突出油膜与背景海水的光谱反射率差异,再结合重柴油光谱特征,利用图像分割的阈值确定法,从疑似溢油区域中有效提取溢油信息,实现溢油区域定位、溢油面积和溢油量的诊断,为事发后海域应急响应工作提供基础性分析依据。
文摘China has a vast territory with abundant crops,and how to collect crop information in China timely,objectively and accurately,is of great significance to the scientific guidance of agricultural development.In this paper,by selecting moderateresolution imaging spectroradiometer(MODIS)data as the main information source,on the basis of spectral and biological characteristics mechanism of the crop,and using the freely available advantage of hyperspectral temporal MODIS data,conduct large scale agricultural remote sensing monitoring research,develop applicable model and algorithm,which can achieve large scale remote sensing extraction and yield estimation of major crop type information,and improve the accuracy of crop quantitative remote sensing.Moreover,the present situation of global crop remote sensing monitoring based on MODIS data is analyzed.Meanwhile,the climate and environment grid agriculture information system using large-scale agricultural condition remote sensing monitoring has been attempted preliminary.
文摘室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪器组成。测量架半径为2m,主要由天顶弧轨道、方位圆轨道、伺服电机、PLC组成。光谱仪器包括一台亮度计和一台照度计,亮度计测量反射亮度,被固定在测量架小车平台上,照度计测量入射照度。两台光谱仪器采用相同的平场凹面光栅分光、线阵列探测器探测。光谱测量范围为400~2500nm,光谱分辨率为3.5nm(400~1000nm)、12nm(1000~2500nm)。系统在工控机的控制下完成自动测量。在自动默认状态下测量周期大约为10min。