Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based comp...Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based compressive wideband spectrum sensing(ECWSS) scheme using random matrix theory(RMT) was proposed in this paper.The ECWSS directly utilized the compressive measurements based on compressive sampling(CS) theory to perform wideband spectrum sensing without requiring signal recovery,which could greatly reduce computational complexity and data acquisition burden.In the ECWSS,to alleviate the communication overhead of secondary user(SU),the sensors around SU carried out compressive sampling at the sub-Nyquist rate instead of SU.Furthermore,the exact probability density function of extreme eigenvalues was used to set the threshold.Theoretical analyses and simulation results show that compared with the existing eigenvalue-based sensing schemes,the ECWSS has much lower computational complexity and cost with no significant detection performance degradation.展开更多
A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of rec...A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of reconstruction is high when the step of the sparsity adaptive matching pursuit algorithm is confirmed as 1. Contrastive analysis for four kinds of commonly used measurement matrices: part Hadamard, Bernoulli, Toeplitz and Circular matrix, has been conducted. The results illustrate that the part Hadamard matrix has better performance of reconstruction than the other matrices. The experimental system of the spectral compression reconstruction is mainly based on the digital micro-mirror device(DMD). The experimental results prove that CS can reconstruct sparse spectrum well under the condition of 50% sampling rate. The system error 0.0781 is obtained, which is defined by the average value of the 2-norm. Furthermore, the proposed method shows a dominant ability to discard redundancy.展开更多
基金National Natural Science Foundations of China(Nos.61201161,61271335)Postdoctoral Science Foundation of Jiangsu Province of China(No.1301002B)
文摘Spectrum sensing in a wideband regime for cognitive radio network(CRN) faces considerably technical challenge due to the constraints on analog-to-digital converters(ADCs).To solve this problem,an eigenvalue-based compressive wideband spectrum sensing(ECWSS) scheme using random matrix theory(RMT) was proposed in this paper.The ECWSS directly utilized the compressive measurements based on compressive sampling(CS) theory to perform wideband spectrum sensing without requiring signal recovery,which could greatly reduce computational complexity and data acquisition burden.In the ECWSS,to alleviate the communication overhead of secondary user(SU),the sensors around SU carried out compressive sampling at the sub-Nyquist rate instead of SU.Furthermore,the exact probability density function of extreme eigenvalues was used to set the threshold.Theoretical analyses and simulation results show that compared with the existing eigenvalue-based sensing schemes,the ECWSS has much lower computational complexity and cost with no significant detection performance degradation.
基金supported by the National Natural Science Foundation of China(Nos.61002013 and 11504435)the Natural Science Foundation of Hubei Province(No.2014CFA051)+1 种基金the Key Technology R&D Program of Hubei Province(No.2015BCE048)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(Nos.CZY13034,CZW15055 and CZP17026)
文摘A new method which employs compressive sensing(CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of reconstruction is high when the step of the sparsity adaptive matching pursuit algorithm is confirmed as 1. Contrastive analysis for four kinds of commonly used measurement matrices: part Hadamard, Bernoulli, Toeplitz and Circular matrix, has been conducted. The results illustrate that the part Hadamard matrix has better performance of reconstruction than the other matrices. The experimental system of the spectral compression reconstruction is mainly based on the digital micro-mirror device(DMD). The experimental results prove that CS can reconstruct sparse spectrum well under the condition of 50% sampling rate. The system error 0.0781 is obtained, which is defined by the average value of the 2-norm. Furthermore, the proposed method shows a dominant ability to discard redundancy.