Pervasive wireless computing and communication have created an ever-increasing demand for more radio spectrum. Since, most of the spectrum is underutilized, it motivated the introduction of the concept of cognitive ra...Pervasive wireless computing and communication have created an ever-increasing demand for more radio spectrum. Since, most of the spectrum is underutilized, it motivated the introduction of the concept of cognitive radios, a dynamic spectrum access enabling technology. The first stage of cognitive radio is to sense the environment and determine which parts of the spectrum are available. This is achieved through spectrum sensing. However, spectrum sensing poses the most fundamental challenge in cognitive radios. Moreover, cognitive radios suffer from many vulnerabilities and the security attacks can severely degrade the performance of cognitive radios. This paper surveys state-of-theart research on spectrum sensing and security threats in cognitive radios. Lastly, we also consider the analysis of issues related to spectrum handoffs in cognitive radios.展开更多
The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum hando...The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced.展开更多
Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we...Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.展开更多
It is envisaged that in future Cognitive Radio (CR) networks deployment, multiple radio access networks may coexist. The networks may have different characteristics in terms of multiple attributes. CRs will have cho...It is envisaged that in future Cognitive Radio (CR) networks deployment, multiple radio access networks may coexist. The networks may have different characteristics in terms of multiple attributes. CRs will have choices of selecting the optimal network out of the available networks. Optimal network selection is a challenging task that can be performed by spectrum handoff with Multiple Attribute Decision Making (MADM). The spectrum handoff decision with MADM provides wider and optimal choice with quality of service. This motivates the development of a spectrum handoff scheme with MADM methods such as simple additive weighting, a technique for order preference by similarity to the ideal solution, a grey relational analysis and a cost function based method, which is the objective of this study. The CR preferences are based on voice, video and data services, called triple play services. The numerical results show that all MADM methods are effective for selecting the optimal network for spectrum handoff with a reduced complexity for the spectrum handoff decision. The paper shows that the proposed spectrum handoff scheme can be effectively implemented to select the optimal network according to triple play services in CR networks.展开更多
According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respecti...According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respectively. It is assumed that SU1 has a higher priority to occupy the primary users' unutilized channels than SU2. A preemptive resume priority M/G/1 queuing network is used to model the multiple spectrum handoffs processing. By using a state transition probability matrix and a cost matrix, the average cumulative delays of SU1 and SU2 are calculated, respectively. Numerical results show that the more the primary user's traffic load, the more rapidly the SU2's cumulative handoff delay grows. Compared with the networks where secondary users are unitary, the lower the SUI's arrival rate, the more obviously both SUI's and SU2's handoff delays decrease. The admission access regions limited by the maximum tolerable delay can also facilitate the design of admission control rules for graded secondary users.展开更多
The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum ...The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.展开更多
In mobility management, detection of spectrum hole plays very important role for doing spectrum handoff mechanism. Operation of the cognitive radio depends on the spectrum sensing which is the most important task in c...In mobility management, detection of spectrum hole plays very important role for doing spectrum handoff mechanism. Operation of the cognitive radio depends on the spectrum sensing which is the most important task in case of cognitive radio network. Detection of spectrum holes (underutilized sub-bands of the radio spectrum) estimates average power, throughput and utilized time for each spectrum hole. But in case of reactive spectrum handoff mechanism, spectrum handoff delay becomes tedious task. So in order to make spectrum handoff mechanism efficient our scheme proposed spectrum handoff mechanism with negligible spectrum handoff delay. In this paper we had real time experimental setup with the spectrum handoff mechanism. We investigate algorithm for spectrum handoff mechanism which strongly minimizes spectrum handoff delay of cognitive radio network using spectrum detection method for sensing spectrum holes.展开更多
认知无线网络(cognitive radio network,CRN)中,为降低认知用户对授权用户干扰,需尽可能的减少频谱切换次数。提出了一种基于预测信道空时间(prediction of the channel idle time,PCIT)的认知无线动态频谱切换方法。该方法基于已知状...认知无线网络(cognitive radio network,CRN)中,为降低认知用户对授权用户干扰,需尽可能的减少频谱切换次数。提出了一种基于预测信道空时间(prediction of the channel idle time,PCIT)的认知无线动态频谱切换方法。该方法基于已知状态序列的隐马尔可夫模型(known-state sequence hidden Markov model,KSS-HMM),利用信道状态的历史信息预测信道未来空闲时间期望及传输数据包的数量,并给出了备选信道的选择方法,通过比较每个备选信道的传输数据量来选择最佳信道进行数据传输。仿真结果表明,与随机信道选择和传统选择方法相比,该方法能明显减少信道切换次数,同时提高了认知用户的吞吐量。展开更多
文摘Pervasive wireless computing and communication have created an ever-increasing demand for more radio spectrum. Since, most of the spectrum is underutilized, it motivated the introduction of the concept of cognitive radios, a dynamic spectrum access enabling technology. The first stage of cognitive radio is to sense the environment and determine which parts of the spectrum are available. This is achieved through spectrum sensing. However, spectrum sensing poses the most fundamental challenge in cognitive radios. Moreover, cognitive radios suffer from many vulnerabilities and the security attacks can severely degrade the performance of cognitive radios. This paper surveys state-of-theart research on spectrum sensing and security threats in cognitive radios. Lastly, we also consider the analysis of issues related to spectrum handoffs in cognitive radios.
基金Supported by the High-Tech Research and Development Program (863 Program) of China (No. 2009AA011801 and 2009AA012002)the National Fundamental Research Program of China (No. A1420080150)+3 种基金the National Basic Research Program (973 Program) of China (No. 2009CB320405)National Grand Special Science and Technology Project of China (No. 2008ZX03005-001, No. 2009ZX03007-004, No. 2009ZX03005-002, No. 2009ZX 03005-004, No. 2010ZX03006-002-02)the Foundation Project of National Key Laboratory of Science and Technology on Communications (No. 9140C0202061004)Special Project on Broadband Wireless Access sponsored by Huawei co., ltd
文摘The secondary usage of spectrum has been investigated in Cognitive Radio(CR) network to resolving the spectrum scarcity issue in wireless communication.When Primary Users(PU) who own the spectrum appear,spectrum handoff is needed to maintain the communications of Secondary Users.But the decision making of spectrum handoff is a challenge issue for CR network,because the input of decision making,which obtain through spectrum sensing,is heterogeneous and inexact.In this paper we will use fuzzy logic control theory to solve this issue and make use of new information for handoff operation:the probability of PU's occupancy at a certain channel.Our new algorithm can make more intelligent decision compared to simple traditional spectrum handoff decision making and reduce the probability of spectrum handoff,also the performance of SU's communication can be enhanced.
基金Heilongjiang Province Natural Science Foundation(Grant No.F2016019);National Natural Science Foundation of China(Grant No.61571162);Major National Science and Technology Project(2015ZX03004002004); China Postdoctoral Science Foundation(Grant No.2014M561347).
文摘Cognitive radio is considered as an efficient way to improve the spectrum efficiency. As one of its key technologies,spectrum handoff can guarantee the transmission continuity of secondary users(SUs). In this paper,we address a new and more generalized spectrum handoff problem in cognitive radio networks(CRNs),by considering simultaneously energy efficiency,multiple spectrum handoffs and multiple channels. Furthermore,effects of the primary users'(PUs')arrival and service rate on the target channel sequence selection are also considered. In order to obtain the energy-efficient target channel sequence,we firstly analyze the energy consumption and the number of delivered bits per hertz in the spectrum handoff process,and formulate a ratio-type energy efficiency optimization problem,which can be transformed into a parametric problem by utilizing fractional programming. Then,we propose an algorithm combining dynamic programming with bisection(DPB)algorithm to solve the energy efficiency optimization problem. Our simulation results verify that the designed target channel sequence has better performance than the existing algorithms in terms of energy efficiency.
文摘It is envisaged that in future Cognitive Radio (CR) networks deployment, multiple radio access networks may coexist. The networks may have different characteristics in terms of multiple attributes. CRs will have choices of selecting the optimal network out of the available networks. Optimal network selection is a challenging task that can be performed by spectrum handoff with Multiple Attribute Decision Making (MADM). The spectrum handoff decision with MADM provides wider and optimal choice with quality of service. This motivates the development of a spectrum handoff scheme with MADM methods such as simple additive weighting, a technique for order preference by similarity to the ideal solution, a grey relational analysis and a cost function based method, which is the objective of this study. The CR preferences are based on voice, video and data services, called triple play services. The numerical results show that all MADM methods are effective for selecting the optimal network for spectrum handoff with a reduced complexity for the spectrum handoff decision. The paper shows that the proposed spectrum handoff scheme can be effectively implemented to select the optimal network according to triple play services in CR networks.
基金The National Natural Science Foundation of China(No.60972026,61271207)the National Science and Technology Major Project(No.2010ZX03006-002-01)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092110009)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2010023)
文摘According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respectively. It is assumed that SU1 has a higher priority to occupy the primary users' unutilized channels than SU2. A preemptive resume priority M/G/1 queuing network is used to model the multiple spectrum handoffs processing. By using a state transition probability matrix and a cost matrix, the average cumulative delays of SU1 and SU2 are calculated, respectively. Numerical results show that the more the primary user's traffic load, the more rapidly the SU2's cumulative handoff delay grows. Compared with the networks where secondary users are unitary, the lower the SUI's arrival rate, the more obviously both SUI's and SU2's handoff delays decrease. The admission access regions limited by the maximum tolerable delay can also facilitate the design of admission control rules for graded secondary users.
基金supported by the National Natural Science Foundation of China under Grant No.61301101
文摘The transmission delay of realtime video packet mainly depends on the sensing time delay(short-term factor) and the entire frame transmission delay(long-term factor).Therefore,the optimization problem in the spectrum handoff process should be formulated as the combination of microscopic optimization and macroscopic optimization.In this paper,we focus on the issue of combining these two optimization models,and propose a novel Evolution Spectrum Handoff(ESH)strategy to minimize the expected transmission delay of real-time video packet.In the microoptimized model,considering the tradeoff between Primary User's(PU's) allowable collision percentage of each channel and transmission delay of video packet,we propose a mixed integer non-linear programming scheme.The scheme is able to achieve the minimum sensing time which is termed as an optimal stopping time.In the macro-optimized model,using the optimal stopping time as reward function within the partially observable Markov decision process framework,the EHS strategy is designed to search an optimal target channel set and minimize the expected delay of packet in the long-term real-time video transmission.Meanwhile,the minimum expected transmission delay is obtained under practical cognitive radio networks' conditions,i.e.,secondary user's mobility,PU's random access,imperfect sensing information,etc..Theoretical analysis and simulation results show that the ESH strategy can effectively reduce the transmission delay of video packet in spectrum handoff process.
文摘In mobility management, detection of spectrum hole plays very important role for doing spectrum handoff mechanism. Operation of the cognitive radio depends on the spectrum sensing which is the most important task in case of cognitive radio network. Detection of spectrum holes (underutilized sub-bands of the radio spectrum) estimates average power, throughput and utilized time for each spectrum hole. But in case of reactive spectrum handoff mechanism, spectrum handoff delay becomes tedious task. So in order to make spectrum handoff mechanism efficient our scheme proposed spectrum handoff mechanism with negligible spectrum handoff delay. In this paper we had real time experimental setup with the spectrum handoff mechanism. We investigate algorithm for spectrum handoff mechanism which strongly minimizes spectrum handoff delay of cognitive radio network using spectrum detection method for sensing spectrum holes.
文摘认知无线网络(cognitive radio network,CRN)中,为降低认知用户对授权用户干扰,需尽可能的减少频谱切换次数。提出了一种基于预测信道空时间(prediction of the channel idle time,PCIT)的认知无线动态频谱切换方法。该方法基于已知状态序列的隐马尔可夫模型(known-state sequence hidden Markov model,KSS-HMM),利用信道状态的历史信息预测信道未来空闲时间期望及传输数据包的数量,并给出了备选信道的选择方法,通过比较每个备选信道的传输数据量来选择最佳信道进行数据传输。仿真结果表明,与随机信道选择和传统选择方法相比,该方法能明显减少信道切换次数,同时提高了认知用户的吞吐量。