期刊文献+
共找到806篇文章
< 1 2 41 >
每页显示 20 50 100
THE HIDDEN MARKOV MODEL OF CO-ARTICULATION AND ITS APPLICATION TO THE CONTINUOUS SPEECH RECOGNITION
1
作者 Lee Tranzai Zheng Fang Wu Wenhu Chen Daowen(Speech Lab., Dept. of Computer Sciences and Technology, Tsinghua University, Beijing 100084) (National Lab. of Pattern Recognition, Inst. of Automation, Chinese Academy of Sci., Beijing 100080) 《Journal of Electronics(China)》 2000年第3期242-247,共6页
The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order ... The co-articulation is one of the main reasons that makes the speech recognition difficult. However, the traditional Hidden Markov Models(HMM) can not model the co-articulation, because they depend on the first-order assumption. In this paper, for modeling the co-articulation, a more perfect HMM than traditional first order HMM is proposed on the basis of the authors’ previous works(1997, 1998) and they give a method in that this HMM is used in continuous speech recognition by means of multilayer perceptrons(MLP), i.e. the hybrid HMM/MLP method with triple MLP structure. The experimental result shows that this new hybrid HMM/MLP method decreases error rate in comparison with authors’ previous works. 展开更多
关键词 speech recognition HIGH-ORDER hmm Hybrid hmm/MLP
下载PDF
Novel Extended Phonemic Set for Mandarin Continuous Speech Recognition
2
作者 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期399-402,共4页
An extended phonemic set of mandarin from the view of speech recognition is proposed. This set absorbs most principles of some other existing phonemic sets for mandarin, like Worldbet and SAMPA-C, and also takes advan... An extended phonemic set of mandarin from the view of speech recognition is proposed. This set absorbs most principles of some other existing phonemic sets for mandarin, like Worldbet and SAMPA-C, and also takes advantage of some practical experiences from speech recognition research for increasing the discriminability between word models. And the experiments in speaker independent continuous speech recognition show that hidden Markov models defined by this phonemic set have a better performance than those based on initial/final units of mandarin and have a very compact size. 展开更多
关键词 speech recognition PHONEME hidden Markov model
下载PDF
Development of Application Specific Continuous Speech Recognition System in Hindi
3
作者 Gaurav Gaurav Devanesamoni Shakina Deiv +1 位作者 Gopal Krishna Sharma Mahua Bhattacharya 《Journal of Signal and Information Processing》 2012年第3期394-401,共8页
Application specific voice interfaces in local languages will go a long way in reaching the benefits of technology to rural India. A continuous speech recognition system in Hindi tailored to aid teaching Geometry in P... Application specific voice interfaces in local languages will go a long way in reaching the benefits of technology to rural India. A continuous speech recognition system in Hindi tailored to aid teaching Geometry in Primary schools is the goal of the work. This paper presents the preliminary work done towards that end. We have used the Mel Frequency Cepstral Coefficients as speech feature parameters and Hidden Markov Modeling to model the acoustic features. Hidden Markov Modeling Tool Kit —3.4 was used both for feature extraction and model generation. The Julius recognizer which is language independent was used for decoding. A speaker independent system is implemented and results are presented. 展开更多
关键词 Automatic speech recognition Mel Frequency Cepstral COEFFICIENTS Hidden MARKOV modeling
下载PDF
Discriminative tone model training and optimal integration for Mandarin speech recognition
4
作者 黄浩 朱杰 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期174-178,共5页
Two discriminative methods for solving tone problems in Mandarin speech recognition are presented. First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an integration t... Two discriminative methods for solving tone problems in Mandarin speech recognition are presented. First, discriminative training on the HMM (hidden Markov model) based tone models is proposed. Then an integration technique of tone models into a large vocabulary continuous speech recognition system is presented. Discriminative model weight training based on minimum phone error criteria is adopted aiming at optimal integration of the tone models. The extended Baum Welch algorithm is applied to find the model-dependent weights to scale the acoustic scores and tone scores. Experimental results show that tone recognition rates and continuous speech recognition accuracy can be improved by the discriminatively trained tone model. Performance of a large vocabulary continuous Mandarin speech recognition system can be further enhanced by the discriminatively trained weight combinations due to a better interpolation of the given models. 展开更多
关键词 discriminative training minimum phone error tone modeling Mandarin speech recognition
下载PDF
Improved hidden Markov model for speech recognition and POS tagging 被引量:4
5
作者 袁里驰 《Journal of Central South University》 SCIE EI CAS 2012年第2期511-516,共6页
In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language proc... In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system. 展开更多
关键词 hidden Markov model Markov family model speech recognition part-of-speech tagging
下载PDF
Fuzzy C-Means Clustering Based Phonetic Tied-Mixture HMM in Speech Recognition 被引量:1
6
作者 徐向华 朱杰 郭强 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第1期16-20,共5页
A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-... A fuzzy clustering analysis based phonetic tied-mixture HMM(FPTM) was presented to decrease parameter size and improve robustness of parameter training. FPTM was synthesized from state-tied HMMs by a modified fuzzy C-means clustering algorithm. Each Gaussian codebook of FPTM was built from Gaussian components within the same root node in phonetic decision tree. The experimental results on large vocabulary Mandarin speech recognition show that compared with conventional phonetic tied-mixture HMM and state-tied HMM with approximately the same number of Gaussian mixtures, FPTM achieves word error rate reductions by 4.84% and 13.02% respectively. Combining the two schemes of mixing weights pruning and Gaussian centers fuzzy merging, a significantly parameter size reduction was achieved with little impact on recognition accuracy. 展开更多
关键词 speech recognition hidden Markov model (hmm) fuzzy C-means (FCM) phonetic decision tree
下载PDF
Robust Speech Recognition System Using Conventional and Hybrid Features of MFCC,LPCC,PLP,RASTA-PLP and Hidden Markov Model Classifier in Noisy Conditions 被引量:7
7
作者 Veton Z.Kepuska Hussien A.Elharati 《Journal of Computer and Communications》 2015年第6期1-9,共9页
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance... In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate. 展开更多
关键词 speech recognition Noisy Conditions Feature Extraction Mel-Frequency Cepstral Coefficients Linear Predictive Coding Coefficients Perceptual Linear Production RASTA-PLP Isolated speech Hidden Markov model
下载PDF
Joint On-Demand Pruning and Online Distillation in Automatic Speech Recognition Language Model Optimization
8
作者 Soonshin Seo Ji-Hwan Kim 《Computers, Materials & Continua》 SCIE EI 2023年第12期2833-2856,共24页
Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these... Automatic speech recognition(ASR)systems have emerged as indispensable tools across a wide spectrum of applications,ranging from transcription services to voice-activated assistants.To enhance the performance of these systems,it is important to deploy efficient models capable of adapting to diverse deployment conditions.In recent years,on-demand pruning methods have obtained significant attention within the ASR domain due to their adaptability in various deployment scenarios.However,these methods often confront substantial trade-offs,particularly in terms of unstable accuracy when reducing the model size.To address challenges,this study introduces two crucial empirical findings.Firstly,it proposes the incorporation of an online distillation mechanism during on-demand pruning training,which holds the promise of maintaining more consistent accuracy levels.Secondly,it proposes the utilization of the Mogrifier long short-term memory(LSTM)language model(LM),an advanced iteration of the conventional LSTM LM,as an effective alternative for pruning targets within the ASR framework.Through rigorous experimentation on the ASR system,employing the Mogrifier LSTM LM and training it using the suggested joint on-demand pruning and online distillation method,this study provides compelling evidence.The results exhibit that the proposed methods significantly outperform a benchmark model trained solely with on-demand pruning methods.Impressively,the proposed strategic configuration successfully reduces the parameter count by approximately 39%,all the while minimizing trade-offs. 展开更多
关键词 Automatic speech recognition neural language model Mogrifier long short-term memory PRUNING DISTILLATION efficient deployment OPTIMIZATION joint training
下载PDF
A Robust Conformer-Based Speech Recognition Model for Mandarin Air Traffic Control
9
作者 Peiyuan Jiang Weijun Pan +2 位作者 Jian Zhang Teng Wang Junxiang Huang 《Computers, Materials & Continua》 SCIE EI 2023年第10期911-940,共30页
This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents ... This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents a novel cascaded model architecture,namely Conformer-CTC/Attention-T5(CCAT),to build a highly accurate and robust ATC speech recognition model.To tackle the challenges posed by noise and fast speech rate in ATC,the Conformer model is employed to extract robust and discriminative speech representations from raw waveforms.On the decoding side,the Attention mechanism is integrated to facilitate precise alignment between input features and output characters.The Text-To-Text Transfer Transformer(T5)language model is also introduced to handle particular pronunciations and code-mixing issues,providing more accurate and concise textual output for downstream tasks.To enhance the model’s robustness,transfer learning and data augmentation techniques are utilized in the training strategy.The model’s performance is optimized by performing hyperparameter tunings,such as adjusting the number of attention heads,encoder layers,and the weights of the loss function.The experimental results demonstrate the significant contributions of data augmentation,hyperparameter tuning,and error correction models to the overall model performance.On the Our ATC Corpus dataset,the proposed model achieves a Character Error Rate(CER)of 3.44%,representing a 3.64%improvement compared to the baseline model.Moreover,the effectiveness of the proposed model is validated on two publicly available datasets.On the AISHELL-1 dataset,the CCAT model achieves a CER of 3.42%,showcasing a 1.23%improvement over the baseline model.Similarly,on the LibriSpeech dataset,the CCAT model achieves a Word Error Rate(WER)of 5.27%,demonstrating a performance improvement of 7.67%compared to the baseline model.Additionally,this paper proposes an evaluation criterion for assessing the robustness of ATC speech recognition systems.In robustness evaluation experiments based on this criterion,the proposed model demonstrates a performance improvement of 22%compared to the baseline model. 展开更多
关键词 Air traffic control automatic speech recognition CONFORMER robustness evaluation T5 error correction model
下载PDF
Hidden Markov Models for Automatic Speech Recognition
10
作者 Mbarki Aymen Ammari Abdelaziz Sghaier Halim Hassen Maaref 《Journal of Mechanics Engineering and Automation》 2011年第1期68-73,共6页
In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in th... In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in the speech recognition field. Although hidden Markov modeling has significantly improved the performance of current speech-recognition systems, the general problem of completely fluent speaker-independent speech recognition is still far from being solved. For example, there is no system which is capable of reliably recognizing unconstrained conversational speech. Also, there does not exist a good way to infer the language structure from a limited corpus of spoken sentences statistically. Therefore, the authors want to provide an overview of the theory of HMM, discuss the role of statistical methods, and point out a range of theoretical and practical issues that deserve attention and are necessary to understand so as to further advance research in the field of speech recognition. 展开更多
关键词 Hidden markov models hmms) speech recognition hmm problems viterbi algorithm.
下载PDF
Subspace Distribution Clustering HMM for Chinese Digit Speech Recognition
11
作者 秦伟 韦岗 《Journal of Electronic Science and Technology of China》 2006年第1期43-46,共4页
As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribut... As a kind of statistical method, the technique of Hidden Markov Model (HMM) is widely used for speech recognition. In order to train the HMM to be more effective with much less amount of data, the Subspace Distribution Clustering Hidden Markov Model (SDCHMM), derived from the Continuous Density Hidden Markov Model (CDHMM), is introduced. With parameter tying, a new method to train SDCHMMs is described. Compared with the conventional training method, an SDCHMM recognizer trained by means of the new method achieves higher accuracy and speed. Experiment results show that the SDCHMM recognizer outperforms the CDHMM recognizer on speech recognition of Chinese digits. 展开更多
关键词 speech recognition Subspace Distribution Clustering Hidden Markov model(SDChmm continuous Density Hidden Markov model (CDhmm parameter tying
下载PDF
Challenges and Limitations in Speech Recognition Technology:A Critical Review of Speech Signal Processing Algorithms,Tools and Systems
12
作者 Sneha Basak Himanshi Agrawal +4 位作者 Shreya Jena Shilpa Gite Mrinal Bachute Biswajeet Pradhan Mazen Assiri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1053-1089,共37页
Speech recognition systems have become a unique human-computer interaction(HCI)family.Speech is one of the most naturally developed human abilities;speech signal processing opens up a transparent and hand-free computa... Speech recognition systems have become a unique human-computer interaction(HCI)family.Speech is one of the most naturally developed human abilities;speech signal processing opens up a transparent and hand-free computation experience.This paper aims to present a retrospective yet modern approach to the world of speech recognition systems.The development journey of ASR(Automatic Speech Recognition)has seen quite a few milestones and breakthrough technologies that have been highlighted in this paper.A step-by-step rundown of the fundamental stages in developing speech recognition systems has been presented,along with a brief discussion of various modern-day developments and applications in this domain.This review paper aims to summarize and provide a beginning point for those starting in the vast field of speech signal processing.Since speech recognition has a vast potential in various industries like telecommunication,emotion recognition,healthcare,etc.,this review would be helpful to researchers who aim at exploring more applications that society can quickly adopt in future years of evolution. 展开更多
关键词 speech recognition automatic speech recognition(ASR) mel-frequency cepstral coefficients(MFCC) hidden Markov model(hmm) artificial neural network(ANN)
下载PDF
Investigation of Automatic Speech Recognition Systems via the Multilingual Deep Neural Network Modeling Methods for a Very Low-Resource Language, Chaha 被引量:1
13
作者 Tessfu Geteye Fantaye Junqing Yu Tulu Tilahun Hailu 《Journal of Signal and Information Processing》 2020年第1期1-21,共21页
Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency a... Automatic speech recognition (ASR) is vital for very low-resource languages for mitigating the extinction trouble. Chaha is one of the low-resource languages, which suffers from the problem of resource insufficiency and some of its phonological, morphological, and orthographic features challenge the development and initiatives in the area of ASR. By considering these challenges, this study is the first endeavor, which analyzed the characteristics of the language, prepared speech corpus, and developed different ASR systems. A small 3-hour read speech corpus was prepared and transcribed. Different basic and rounded phone unit-based speech recognizers were explored using multilingual deep neural network (DNN) modeling methods. The experimental results demonstrated that all the basic phone and rounded phone unit-based multilingual models outperformed the corresponding unilingual models with the relative performance improvements of 5.47% to 19.87% and 5.74% to 16.77%, respectively. The rounded phone unit-based multilingual models outperformed the equivalent basic phone unit-based models with relative performance improvements of 0.95% to 4.98%. Overall, we discovered that multilingual DNN modeling methods are profoundly effective to develop Chaha speech recognizers. Both the basic and rounded phone acoustic units are convenient to build Chaha ASR system. However, the rounded phone unit-based models are superior in performance and faster in recognition speed over the corresponding basic phone unit-based models. Hence, the rounded phone units are the most suitable acoustic units to develop Chaha ASR systems. 展开更多
关键词 Automatic speech recognition MULTILINGUAL DNN modeling Methods Basic PHONE ACOUSTIC UNITS Rounded PHONE ACOUSTIC UNITS Chaha
下载PDF
Speech Recognition-Based Automated Visual Acuity Testing with Adaptive Mel Filter Bank 被引量:2
14
作者 Shibli Nisar Muhammad Asghar Khan +3 位作者 Fahad Algarni Abdul Wakeel M.Irfan Uddin Insaf Ullah 《Computers, Materials & Continua》 SCIE EI 2022年第2期2991-3004,共14页
One of the most commonly reported disabilities is vision loss,which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient.This procedure,however,usually requires an appointment wi... One of the most commonly reported disabilities is vision loss,which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient.This procedure,however,usually requires an appointment with an ophthalmologist,which is both time-consuming and expensive process.Other issues that can arise include a lack of appropriate equipment and trained practitioners,especially in rural areas.Centered on a cognitively motivated attribute extraction and speech recognition approach,this paper proposes a novel idea that immediately determines the eyesight deficiency.The proposed system uses an adaptive filter bank with weighted mel frequency cepstral coefficients for feature extraction.The adaptive filter bank implementation is inspired by the principle of spectrum sensing in cognitive radio that is aware of its environment and adapts to statistical variations in the input stimuli by learning from the environment.Comparative performance evaluation demonstrates the potential of our automated visual acuity test method to achieve comparable results to the clinical ground truth,established by the expert ophthalmologist’s tests.The overall accuracy achieved by the proposed model when compared with the expert ophthalmologist test is 91.875%.The proposed method potentially offers a second opinion to ophthalmologists,and serves as a cost-effective pre-screening test to predict eyesight loss at an early stage. 展开更多
关键词 Eyesight test speech recognition hmm SVM feature extraction
下载PDF
Novel Active Learning Method for Speech Recognition 被引量:1
15
作者 Liu Gang Chen Wei Guo Jun 《China Communications》 SCIE CSCD 2010年第5期29-39,共11页
In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learni... In speech recognition, acoustic modeling always requires tremendous transcribed samples, and the transcription becomes intensively time-consuming and costly. In order to aid this labor-intensive process, Active Learning (AL) is adopted for speech recognition, where only the most informative training samples are selected for manual annotation. In this paper, we propose a novel active learning method for Chinese acoustic modeling, the methods for initial training set selection based on Kullback-Leibler Divergence (KLD) and sample evaluation based on multi-level confusion networks are proposed and adopted in our active learning system, respectively. Our experiments show that our proposed method can achieve satisfying performances. 展开更多
关键词 active learning acoustic model speech recognition KLD confusion network
下载PDF
EMOTIONAL SPEECH RECOGNITION BASED ON SVM WITH GMM SUPERVECTOR 被引量:1
16
作者 Chen Yanxiang Xie Jian 《Journal of Electronics(China)》 2012年第3期339-344,共6页
Emotion recognition from speech is an important field of research in human computer interaction. In this letter the framework of Support Vector Machines (SVM) with Gaussian Mixture Model (GMM) supervector is introduce... Emotion recognition from speech is an important field of research in human computer interaction. In this letter the framework of Support Vector Machines (SVM) with Gaussian Mixture Model (GMM) supervector is introduced for emotional speech recognition. Because of the importance of variance in reflecting the distribution of speech, the normalized mean vectors potential to exploit the information from the variance are adopted to form the GMM supervector. Comparative experiments from five aspects are conducted to study their corresponding effect to system performance. The experiment results, which indicate that the influence of number of mixtures is strong as well as influence of duration is weak, provide basis for the train set selection of Universal Background Model (UBM). 展开更多
关键词 Emotional speech recognition Support Vector Machines (SVM) Gaussian Mixture model (GMM) supervector Universal Background model (USB)
下载PDF
Tibetan Multi-Dialect Speech Recognition Using Latent Regression Bayesian Network and End-To-End Mode 被引量:1
17
作者 Yue Zhao Jianjian Yue +4 位作者 Wei Song Xiaona Xu Xiali Li Licheng Wu Qiang Ji 《Journal on Internet of Things》 2019年第1期17-23,共7页
We proposed a method using latent regression Bayesian network (LRBN) toextract the shared speech feature for the input of end-to-end speech recognition model.The structure of LRBN is compact and its parameter learning... We proposed a method using latent regression Bayesian network (LRBN) toextract the shared speech feature for the input of end-to-end speech recognition model.The structure of LRBN is compact and its parameter learning is fast. Compared withConvolutional Neural Network, it has a simpler and understood structure and lessparameters to learn. Experimental results show that the advantage of hybridLRBN/Bidirectional Long Short-Term Memory-Connectionist Temporal Classificationarchitecture for Tibetan multi-dialect speech recognition, and demonstrate the LRBN ishelpful to differentiate among multiple language speech sets. 展开更多
关键词 Multi-dialect speech recognition Tibetan language latent regressionbayesian network end-to-end model
下载PDF
Cross-Language Transfer Learning-based Lhasa-Tibetan Speech Recognition
18
作者 Zhijie Wang Yue Zhao +3 位作者 Licheng Wu Xiaojun Bi Zhuoma Dawa Qiang Ji 《Computers, Materials & Continua》 SCIE EI 2022年第10期629-639,共11页
As one of Chinese minority languages,Tibetan speech recognition technology was not researched upon as extensively as Chinese and English were until recently.This,along with the relatively small Tibetan corpus,has resu... As one of Chinese minority languages,Tibetan speech recognition technology was not researched upon as extensively as Chinese and English were until recently.This,along with the relatively small Tibetan corpus,has resulted in an unsatisfying performance of Tibetan speech recognition based on an end-to-end model.This paper aims to achieve an accurate Tibetan speech recognition using a small amount of Tibetan training data.We demonstrate effective methods of Tibetan end-to-end speech recognition via cross-language transfer learning from three aspects:modeling unit selection,transfer learning method,and source language selection.Experimental results show that the Chinese-Tibetan multi-language learning method using multilanguage character set as the modeling unit yields the best performance on Tibetan Character Error Rate(CER)at 27.3%,which is reduced by 26.1%compared to the language-specific model.And our method also achieves the 2.2%higher accuracy using less amount of data compared with the method using Tibetan multi-dialect transfer learning under the same model structure and data set. 展开更多
关键词 Cross-language transfer learning low-resource language modeling unit Tibetan speech recognition
下载PDF
A Combined Speaker Adaptation Method for Mandarin Speech Recognition
19
作者 徐向华 朱杰 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第4期21-24,共4页
A speaker adaptation method that combines transformation matrix linear interpolation with maximum a posteriori (MAP) was proposed. Firstly this method can keep the asymptotical characteristic of MAP. Secondly, as the ... A speaker adaptation method that combines transformation matrix linear interpolation with maximum a posteriori (MAP) was proposed. Firstly this method can keep the asymptotical characteristic of MAP. Secondly, as the method uses linear interpolation with several speaker-dependent (SD) transformation matrixes, it can fully use the prior knowledge and keep fast adaptation. The experimental results show that the combined method achieves an 8.24% word error rate reduction with only one adaptation utterance, and keeps asymptotic to the performance of SD model for large amounts of adaptation data. 展开更多
关键词 speech recognition speaker adaptation maximum a posteriori (MAP) maximum likelihood model interpolation (MLMI)
下载PDF
Using vector Taylor series with noise clustering for speech recognition in non-stationary noisy environments
20
作者 赵贤宇 Ou Zhijian Wang Zuoying 《High Technology Letters》 EI CAS 2006年第1期18-23,共6页
The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches cau... The performance of automatic speech recognizer degrades seriously when there are mismatches between the training and testing conditions. Vector Taylor Series (VTS) approach has been used to compensate mismatches caused by additive noise and convolutive channel distortion in the cepstral domain, in this paper, the conventional VTS is extended by incorporating noise clustering into its EM iteration procedure, improving its compensation effectiveness under non-stationary noisy environments. Recognition experiments under babble and exhibition noisy environments demonstrate that the new algorithm achieves 35% average error rate reduction compared with the conventional VTS. 展开更多
关键词 speech recognition ROBUSTNESS model adaptation CLUSTERING
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部