Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,wit...Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.展开更多
Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to en...Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.展开更多
Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to ...Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to serve the whole spectrum of problems addressed in computational linguistics have lately yielded a number of promising breakthroughs.These methods were particularly advantageous for regional languages,as they were provided with cut-ting-edge language processing tools as soon as the requisite corporate information was generated.The bulk of modern people are unconcerned about the importance of reading.Reading aloud,on the other hand,is an effective technique for nour-ishing feelings as well as a necessary skill in the learning process.This paper pro-posed a novel approach for speech recognition based on neural networks.The attention mechanism isfirst utilized to determine the speech accuracy andfluency assessments,with the spectrum map as the feature extraction input.To increase phoneme identification accuracy,reading precision,for example,employs a new type of deep speech.It makes use of the exportchapter tool,which provides a corpus,as well as the TensorFlow framework in the experimental setting.The experimentalfindings reveal that the suggested model can more effectively assess spoken speech accuracy and readingfluency than the old model,and its evalua-tion model’s score outcomes are more accurate.展开更多
Based on W-disjoint orthogonality of speech mixtures, a space d,scnmlnative tunetlon was proposer1 to enumerate and localize competing speakers in the surrounding environments. Then, a Wiener-like postfiherer was deve...Based on W-disjoint orthogonality of speech mixtures, a space d,scnmlnative tunetlon was proposer1 to enumerate and localize competing speakers in the surrounding environments. Then, a Wiener-like postfiherer was developed to adaptively suppress interferences. Experimental results with a hands-free speech recognizer under various SNR and competing speakers settings show that nearly 69 % error reduction can be obtained with a two-channel small aperture microphone array against the conventional single microphone baseline system. Comparisons were made against traditional delay-and-sum and Griffiths-Jim adaptive beamforming techniques to further assess the effectiveness of this method.展开更多
Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel wi...Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel width without loss of speech quality remains a crucial problem in speech coding theory. A new full-duplex digital speech communication system based on the Vocoder of AMBE-1000(TM) and microcontroller ATMEL 89C51 is introduced. It shows higher voice quality than current mobile phone system with only a quarter of channel width needed for the latter. The prospective areas in which the system can be applied include satellite communication, IP Phone, virtual meeting and the most important, defence industry.展开更多
Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy...Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy, language- independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a convenient option to solve tile problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small-footprint SD ASR for real-time applications with limited storage and small vocabularies. These applications include voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. However, traditional DTW has several lhnitations, such as high computational complexity, constraint induced coarse approximation, and inaccuracy problems. In this paper, we introduce the merge-weighted dynamic time warping (MWDTW) algorithm. This method defines a template confidence index for measuring the similarity between merged training data and testing data, while following the core DTW process. MWDTW is simple, efficient, and easy to implement. With extensive experiments on three representative SD speech recognition datasets, we demonstrate that our method outperforms DTW, DTW on merged speech data, the hidden Markov model (HMM) significantly, and is also six times faster than DTW overall.展开更多
This paper describes a branch of pattern recognition and lies in the field of digital signal processing.It is a speech recognition system of identifying different people speaking based on deep learning.In brief this m...This paper describes a branch of pattern recognition and lies in the field of digital signal processing.It is a speech recognition system of identifying different people speaking based on deep learning.In brief this method can be used as intelligent voice control like Siri.展开更多
基金supported by the National Natural Science Foundation of China(NSFC,no.61701243,71771125)the Major Project of Natural Science Foundation of Jiangsu Education Department(no.19KJA180002).
文摘Depression has become one of the most common mental illnesses in the world.For better prediction and diagnosis,methods of automatic depression recognition based on speech signal are constantly proposed and updated,with a transition from the early traditional methods based on hand‐crafted features to the application of architectures of deep learning.This paper systematically and precisely outlines the most prominent and up‐to‐date research of automatic depression recognition by intelligent speech signal processing so far.Furthermore,methods for acoustic feature extraction,algorithms for classification and regression,as well as end to end deep models are investigated and analysed.Finally,general trends are summarised and key unresolved issues are identified to be considered in future studies of automatic speech depression recognition.
文摘Speech recognition or speech to text includes capturing and digitizing the sound waves, transformation of basic linguistic units or phonemes, constructing words from phonemes and contextually analyzing the words to ensure the correct spelling of words that sounds the same. Approach: Studying the possibility of designing a software system using one of the techniques of artificial intelligence applications neuron networks where this system is able to distinguish the sound signals and neural networks of irregular users. Fixed weights are trained on those forms first and then the system gives the output match for each of these formats and high speed. The proposed neural network study is based on solutions of speech recognition tasks, detecting signals using angular modulation and detection of modulated techniques.
基金the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4170008DSR06).
文摘Natural language processing technologies have become more widely available in recent years,making them more useful in everyday situations.Machine learning systems that employ accessible datasets and corporate work to serve the whole spectrum of problems addressed in computational linguistics have lately yielded a number of promising breakthroughs.These methods were particularly advantageous for regional languages,as they were provided with cut-ting-edge language processing tools as soon as the requisite corporate information was generated.The bulk of modern people are unconcerned about the importance of reading.Reading aloud,on the other hand,is an effective technique for nour-ishing feelings as well as a necessary skill in the learning process.This paper pro-posed a novel approach for speech recognition based on neural networks.The attention mechanism isfirst utilized to determine the speech accuracy andfluency assessments,with the spectrum map as the feature extraction input.To increase phoneme identification accuracy,reading precision,for example,employs a new type of deep speech.It makes use of the exportchapter tool,which provides a corpus,as well as the TensorFlow framework in the experimental setting.The experimentalfindings reveal that the suggested model can more effectively assess spoken speech accuracy and readingfluency than the old model,and its evalua-tion model’s score outcomes are more accurate.
文摘Based on W-disjoint orthogonality of speech mixtures, a space d,scnmlnative tunetlon was proposer1 to enumerate and localize competing speakers in the surrounding environments. Then, a Wiener-like postfiherer was developed to adaptively suppress interferences. Experimental results with a hands-free speech recognizer under various SNR and competing speakers settings show that nearly 69 % error reduction can be obtained with a two-channel small aperture microphone array against the conventional single microphone baseline system. Comparisons were made against traditional delay-and-sum and Griffiths-Jim adaptive beamforming techniques to further assess the effectiveness of this method.
文摘Since Pulse Code Modulation emerged in 1937, digitized speech has experienced rapid development due to its outstanding voice quality, reliability, robustness and security in communication. But how to reduce channel width without loss of speech quality remains a crucial problem in speech coding theory. A new full-duplex digital speech communication system based on the Vocoder of AMBE-1000(TM) and microcontroller ATMEL 89C51 is introduced. It shows higher voice quality than current mobile phone system with only a quarter of channel width needed for the latter. The prospective areas in which the system can be applied include satellite communication, IP Phone, virtual meeting and the most important, defence industry.
基金supported by the Research Plan Project of National University of Defense Technology under Grant No.JC13-06-01the OCRit Project made possible by the Global Leadership Round in Genomics&Life Sciences Grant(GL2)
文摘Obtaining training material for rarely used English words and common given names from countries where English is not spoken is difficult due to excessive time, storage and cost factors. By considering personal privacy, language- independent (LI) with lightweight speaker-dependent (SD) automatic speech recognition (ASR) is a convenient option to solve tile problem. The dynamic time warping (DTW) algorithm is the state-of-the-art algorithm for small-footprint SD ASR for real-time applications with limited storage and small vocabularies. These applications include voice dialing on mobile devices, menu-driven recognition, and voice control on vehicles and robotics. However, traditional DTW has several lhnitations, such as high computational complexity, constraint induced coarse approximation, and inaccuracy problems. In this paper, we introduce the merge-weighted dynamic time warping (MWDTW) algorithm. This method defines a template confidence index for measuring the similarity between merged training data and testing data, while following the core DTW process. MWDTW is simple, efficient, and easy to implement. With extensive experiments on three representative SD speech recognition datasets, we demonstrate that our method outperforms DTW, DTW on merged speech data, the hidden Markov model (HMM) significantly, and is also six times faster than DTW overall.
文摘This paper describes a branch of pattern recognition and lies in the field of digital signal processing.It is a speech recognition system of identifying different people speaking based on deep learning.In brief this method can be used as intelligent voice control like Siri.