期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Adaptive spatial-temporal graph attention network for traffic speed prediction
1
作者 ZHANG Xijun ZHANG Baoqi +2 位作者 ZHANG Hong NIE Shengyuan ZHANG Xianli 《High Technology Letters》 EI CAS 2024年第3期221-230,共10页
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic... Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction. 展开更多
关键词 traffic speed prediction spatial-temporal correlation self-adaptive adjacency ma-trix graph attention network(GAT) bidirectional gated recurrent unit(BiGRU)
下载PDF
Short‐time wind speed prediction based on Legendre multi‐wavelet neural network 被引量:1
2
作者 Xiaoyang Zheng Dongqing Jia +3 位作者 Zhihan Lv Chengyou Luo Junli Zhao Zeyu Ye 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期946-962,共17页
As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.Howeve... As one of the most widespread renewable energy sources,wind energy is now an important part of the power system.Accurate and appropriate wind speed forecasting has an essential impact on wind energy utilisation.However,due to the stochastic and un-certain nature of wind energy,more accurate forecasting is necessary for its more stable and safer utilisation.This paper proposes a Legendre multiwavelet‐based neural network model for non‐linear wind speed prediction.It combines the excellent properties of Legendre multi‐wavelets with the self‐learning capability of neural networks,which has rigorous mathematical theory support.It learns input‐output data pairs and shares weights within divided subintervals,which can greatly reduce computing costs.We explore the effectiveness of Legendre multi‐wavelets as an activation function.Mean-while,it is successfully being applied to wind speed prediction.In addition,the appli-cation of Legendre multi‐wavelet neural networks in a hybrid model in decomposition‐reconstruction mode to wind speed prediction problems is also discussed.Numerical results on real data sets show that the proposed model is able to achieve optimal per-formance and high prediction accuracy.In particular,the model shows a more stable performance in multi‐step prediction,illustrating its superiority. 展开更多
关键词 artificial neural network neural network time series wavelet transforms wind speed prediction
下载PDF
Short-term Wind Speed Prediction with a Two-layer Attention-based LSTM 被引量:3
3
作者 Jingcheng Qian Mingfang Zhu +1 位作者 Yingnan Zhao Xiangjian He 《Computer Systems Science & Engineering》 SCIE EI 2021年第11期197-209,共13页
Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,... Wind speed prediction is of great importance because it affects the efficiency and stability of power systems with a high proportion of wind power.Temporal-spatial wind speed features contain rich information;however,their use to predict wind speed remains one of the most challenging and less studied areas.This paper investigates the problem of predicting wind speeds for multiple sites using temporal and spatial features and proposes a novel two-layer attentionbased long short-term memory(LSTM),termed 2Attn-LSTM,a unified framework of encoder and decoder mechanisms to handle temporal-spatial wind speed data.To eliminate the unevenness of the original wind speed,we initially decompose the preprocessing data into IMF components by variational mode decomposition(VMD).Then,it encodes the spatial features of IMF components at the bottom of the model and decodes the temporal features to obtain each component's predicted value on the second layer.Finally,we obtain the ultimate prediction value after denormalization and superposition.We have performed extensive experiments for short-term predictions on real-world data,demonstrating that 2Attn-LSTM outperforms the four baseline methods.It is worth pointing out that the presented 2Atts-LSTM is a general model suitable for other spatial-temporal features. 展开更多
关键词 Wind speed prediction temporal-spatial features VMD LSTM attention mechanism
下载PDF
Functional-type Single-input-rule-modules Connected Neural Fuzzy System for Wind Speed Prediction 被引量:1
4
作者 Chengdong Li Li Wang +2 位作者 Guiqing Zhang Huidong Wang Fang Shang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期751-762,共12页
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a... Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy. 展开更多
关键词 Fuzzy inference system(FIS) Iearning algorithm neural fuzzy system single input rule module wind speed prediction
下载PDF
Spatio-Temporal Wind Speed Prediction Based on Variational Mode Decomposition
5
作者 Yingnan Zhao Guanlan Ji +2 位作者 Fei Chen Peiyuan Ji Yi Cao 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期719-735,共17页
Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal netw... Improving short-term wind speed prediction accuracy and stability remains a challenge for wind forecasting researchers.This paper proposes a new variational mode decomposition(VMD)-attention-based spatio-temporal network(VASTN)method that takes advantage of both temporal and spatial correlations of wind speed.First,VASTN is a hybrid wind speed prediction model that combines VMD,squeeze-and-excitation network(SENet),and attention mechanism(AM)-based bidirectional long short-term memory(BiLSTM).VASTN initially employs VMD to decompose the wind speed matrix into a series of intrinsic mode functions(IMF).Then,to extract the spatial features at the bottom of the model,each IMF employs an improved convolutional neural network algorithm based on channel AM,also known as SENet.Second,it combines BiLSTM and AM at the top layer to extract aggregated spatial features and capture temporal dependencies.Finally,VASTN accumulates the predictions of each IMF to obtain the predicted wind speed.This method employs VMD to reduce the randomness and instability of the original data before employing AM to improve prediction accuracy through mapping weight and parameter learning.Experimental results on real-world data demonstrate VASTN’s superiority over previous related algorithms. 展开更多
关键词 Short-term wind speed prediction variational mode decomposition attention mechanism SENet BiLSTM
下载PDF
Speed prediction models for car and sports utility vehicleat locations along four-lane median divided horizontal curves
6
作者 Avijit Maji Ayush Tyagi 《Journal of Modern Transportation》 2018年第4期278-284,共7页
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(... Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony. 展开更多
关键词 Vehicle speed prediction model Four-lane median divided highway Horizontal curve Regression analysis The 85th percentile speed
下载PDF
GA-LSTM speed prediction-based DDQN energy management for extended-range vehicles
7
作者 Laiwei Lu Hong Zhao +3 位作者 Fuliang Xv Yong Luo Junjie Chen Xiaoyun Ding 《Energy and AI》 EI 2024年第3期11-28,共18页
In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate a... In this paper,a dual deep Q-network(DDQN)energy management model based on long-short memory neural network(LSTM)speed prediction is proposed under the model predictive control(MPC)framework.The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm(GA).The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons.The predicted demand power,the state of charge(SOC),and the demand power at the current moment are used as the state input of the agent,and the real-time control of the control strategy is realized by the MPC method.The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN,0.8439 kg compared with ECMS,and 0.742 kg compared with the power-following control strategy.The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg,0.193%,while the SOC of the power battery remains stable.Finally,the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance. 展开更多
关键词 Extended-range vehicle LSTM speed prediction Genetic algorithm Model predictive control(MPC) Deep reinforcement learning Double deep Q-network(DDQN)
原文传递
Improved deep mixed kernel randomized network for wind speed prediction
8
作者 Vijaya Krishna Rayi Ranjeeta Bisoi +1 位作者 S.P.Mishra P.K.Dash 《Clean Energy》 EI CSCD 2023年第5期1006-1031,共26页
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera... Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods. 展开更多
关键词 deep neural network mixed kernel random vector functional network auto-encoder chaotic sine-cosine Levy flight optimization single and multistep wind speed prediction
原文传递
Prediction of Wind Speed Using a Hybrid Regression-Optimization Approach
9
作者 Bhuvana Ramachandran Anbazhagan Swaminathan 《Journal of Power and Energy Engineering》 2023年第7期21-35,共15页
Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to pr... Predicting wind speed is a complex task that involves analyzing various meteorological factors such as temperature, humidity, atmospheric pressure, and topography. There are different approaches that can be used to predict wind speed, and a hybrid optimization approach is one of them. In this paper, the hybrid optimization approach combines a multiple linear regression approach with an optimization technique to achieve better results. In the context of wind speed prediction, this hybrid optimization approach can be used to improve the accuracy of existing prediction models. Here, a Grey Wolf Optimizer based Wind Speed Prediction (GWO-WSP) method is proposed. This approach is tested on the 2016, 2017, 2018, and 2019 Raw Data files from the Great Lakes Environmental Research Laboratories and the National Oceanic and Atmospheric Administration’s (GLERL-NOAA) Chicago Metadata Archive. The test results show that the implementation is successful and the approach yields accurate and feasible results. The computation time for execution of the algorithm is also superior compared to the existing methods in literature. 展开更多
关键词 Wind speed prediction Multiple Linear Regression Grey Wolf Optimizer Accuracy of Results Wind Power
下载PDF
Short Term Wind Speed Prediction Using Multiple Kernel Pseudo Inverse Neural Network 被引量:5
10
作者 S.P.Mishra P.K.Dash 《International Journal of Automation and computing》 EI CSCD 2018年第1期66-83,共18页
An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo i... An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours. 展开更多
关键词 Wind speed prediction pseudo inverse neural network kernel ridge regression nonlinear kernels firefly optimizatiotl.
原文传递
Combined Prediction for Vehicle Speed with Fixed Route 被引量:3
11
作者 Lipeng Zhang Wei Liu Bingnan Qi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期113-125,共13页
Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail... Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption. 展开更多
关键词 Plug-in hybrid electric vehicles Energy consumption Vehicle speed prediction MARKOV BP neural networks Combined prediction model
下载PDF
Stochastic speed prediction for connected vehicles using improved bayesian networks with back propagation 被引量:2
12
作者 WANG LiHua CUI YaHui +3 位作者 ZHANG FengQi COSKUN Serdar LIU KaiLong LI GuangLei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第7期1524-1536,共13页
Advanced vehicular control technologies rely on accurate speed prediction to make ecological and safe decisions. This paper proposes a novel stochastic speed prediction method for connected vehicles by incorporating a... Advanced vehicular control technologies rely on accurate speed prediction to make ecological and safe decisions. This paper proposes a novel stochastic speed prediction method for connected vehicles by incorporating a Bayesian network(BN) and a Back Propagation(BP) neural network. A BN model is first designed for predicting the stochastic vehicular speed in a priori. To improve the accuracy of the BN-based speed prediction, a BP-based predicted speed error compensation module is constructed by formulating a mapping between the predicted speed and its corresponding prediction error. In the end, a filtering algorithm is developed to smoothen the compensated stochastic vehicular speed. To validate the workings of the proposed approaches in experiments, two typical scenarios are considered: one predecessor vehicle in a double-vehicle scenario and two predecessor vehicles in a multi-vehicle scenario. Simulation results under the considered scenarios demonstrate that the proposed BN-BP fusion method outperforms the BN-based method with respect to the root mean square error, standardized residuals, and R-squared, and the online prediction time of proposed fusion prediction can satisfy a real-time application requirement. The main highlighted contributions of this article are threefold:(1) We put forward an improved BN method, which is combined with a BP neural network, to construct a stochastic vehicular speed prediction method under connected driving;(2) different from existing methods, a unique interconnected framework that consists of a stochastic vehicular speed prediction module, a compensation module, and a speed smoothing module is proposed;(3) extensive simulation studies based on a set of evaluation metrics are illustrated to reveal the advantages and merits of the proposed approaches. 展开更多
关键词 connected vehicles stochastic vehicular speed prediction Bayesian network BACK-PROPAGATION
原文传递
Performance of the CMA-GD Model in Predicting Wind Speed at Wind Farms in Hubei, China 被引量:1
13
作者 许沛华 成驰 +3 位作者 王文 陈正洪 钟水新 张艳霞 《Journal of Tropical Meteorology》 SCIE 2023年第4期473-481,共9页
This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two win... This study assesses the predictive capabilities of the CMA-GD model for wind speed prediction in two wind farms located in Hubei Province,China.The observed wind speeds at the height of 70m in wind turbines of two wind farms in Suizhou serve as the actual observation data for comparison and testing.At the same time,the wind speed predicted by the EC model is also included for comparative analysis.The results indicate that the CMA-GD model performs better than the EC model in Wind Farm A.The CMA-GD model exhibits a monthly average correlation coefficient of 0.56,root mean square error of 2.72 m s^(-1),and average absolute error of 2.11 m s^(-1).In contrast,the EC model shows a monthly average correlation coefficient of 0.51,root mean square error of 2.83 m s^(-1),and average absolute error of 2.21 m s^(-1).Conversely,in Wind Farm B,the EC model outperforms the CMA-GD model.The CMA-GD model achieves a monthly average correlation coefficient of 0.55,root mean square error of 2.61 m s^(-1),and average absolute error of 2.13 m s^(-1).By contrast,the EC model displays a monthly average correlation coefficient of 0.63,root mean square error of 2.04 m s^(-1),and average absolute error of 1.67 m s^(-1). 展开更多
关键词 CMA-GD wind speed prediction wind farm root mean square error performance evaluation
下载PDF
Wind speed prediction based on nested shared weight long short-term memory network
14
作者 Han Fengquan Han Yinghua +1 位作者 Lu Jing Zhao Qiang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第1期41-51,共11页
With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed... With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction. 展开更多
关键词 wind speed prediction feature extraction long short-term memory(LSTM)network shared weight forecast uncertainty
原文传递
Station-keeping control for a stratosphere airship via wind speed prediction approach
15
作者 Jihui Qiu Shaoping Shen Zhibin Li 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第4期464-477,共14页
Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed pred... Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed prediction based on the incremental extreme learning machine(I-ELM).Design/methodology/approach–First of all,the online prediction of wind speed is implemented by the I-ELM with rolling time.Second,the feedforward-feedback PID controller is designed through the position information of the airship and the predicted wind speed.In the end,the one-dimensional dynamic model of the stratosphere airship is built,and the controller is applied in the numerical simulation.Findings–Based on the conducted numerical simulations,some valuable conclusions are obtained.First,through the comparison between the predicted value and true value of the wind speed,the wind speed prediction based on I-ELM is very accurate.Second,the feedforward-feedback PID controller designed in this paper is very effective.Originality/value–This paper is very valuable to the research of a high-accuracy station-keeping control of stratosphere airship. 展开更多
关键词 Feedforward-feedback PID controller Incremental extreme learning machine Station-keeping control Stratosphere airship Wind speed prediction
原文传递
Wind Speed Short-Term Prediction Based on Empirical Wavelet Transform, Recurrent Neural Network and Error Correction
16
作者 朱昶胜 朱丽娜 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期297-308,共12页
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ... Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction. 展开更多
关键词 wind speed prediction empirical wavelet transform deep long short term memory network Elman neural network error correction strategy
原文传递
Model predictive control of rigid spacecraft with two variable speed control moment gyroscopes 被引量:3
17
作者 Pengcheng WU Hao WEN +1 位作者 Ti CHEN Dongping JIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第11期1551-1564,共14页
In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematica... In this paper, an attitude maneuver control problem is investigated for a rigid spacecraft using an array of two variable speed control moment gyroscopes (VSCMGs) with gimbal axes skewed to each other. A mathematical model is constructed by taking the spacecraft and the gyroscopes together as an integrated system, with the coupling interaction between them considered. To overcome the singular issues of the VSCMGs due to the conventional torque-based method, the first-order derivative of gimbal rates and the second-order derivative of the rotor spinning velocity, instead of the gyroscope torques, are taken as input variables. Moreover, taking external disturbances into account, a feedback control law is designed for the system based on a method of nonlinear model predictive control (NMPC). The attitude maneuver can be realized fast and smoothly by using the proposed controller in this paper. 展开更多
关键词 integrated system variable speed control moment gyroscope (VSCMG) nonlinear model predictive control (NMPC)
下载PDF
AUTOSIM:Automated Urban Traffic Operation Simulation via Meta-Learning 被引量:2
18
作者 Yuanqi Qin Wen Hua +5 位作者 Junchen Jin Jun Ge Xingyuan Dai Lingxi Li Xiao Wang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1871-1881,共11页
Online traffic simulation that feeds from online information to simulate vehicle movement in real-time has recently seen substantial advancement in the development of intelligent transportation systems and urban traff... Online traffic simulation that feeds from online information to simulate vehicle movement in real-time has recently seen substantial advancement in the development of intelligent transportation systems and urban traffic management.It has been a challenging problem due to three aspects:1)The diversity of traffic patterns due to heterogeneous layouts of urban intersections;2)The nature of complex spatiotemporal correlations;3)The requirement of dynamically adjusting the parameters of traffic models in a real-time system.To cater to these challenges,this paper proposes an online traffic simulation framework called automated urban traffic operation simulation via meta-learning(AUTOSIM).In particular,simulation models with various intersection layouts are automatically generated using an open-source simulation tool based on static traffic geometry attributes.Through a meta-learning technique,AUTOSIM enables an automated learning process for dynamic model settings of traffic scenarios featured with different spatiotemporal correlations.Besides,AUTOSIM is capable of adapting traffic model parameters according to dynamic traffic information in real-time by using a meta-learner.Through computational experiments,we demonstrate the effectiveness of the meta-learningbased framework that is capable of providing reliable supports to real-time traffic simulation and dynamic traffic operations. 展开更多
关键词 Conditional generative adversarial network signalized urban networks short-term link speed prediction
下载PDF
Modelling the performance of EPB shield tunnelling using machine and deep learning algorithms 被引量:20
19
作者 Song-Shun Lin Shui-Long Shen +1 位作者 Ning Zhang Annan Zhou 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期81-92,共12页
This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning technique... This paper introduces an intelligent framework for predicting the advancing speed during earth pressure balance(EPB)shield tunnelling.Five artificial intelligence(AI)models based on machine and deep learning techniques-back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),long-short term memory(LSTM),and gated recurrent unit(GRU)-are used.Five geological and nine operational parameters that influence the advancing speed are considered.A field case of shield tunnelling in Shenzhen City,China is analyzed using the developed models.A total of 1000 field datasets are adopted to establish intelligent models.The prediction performance of the five models is ranked as GRU>LSTM>SVM>ELM>BPNN.Moreover,the Pearson correlation coefficient(PCC)is adopted for sensitivity analysis.The results reveal that the main thrust(MT),penetration(P),foam volume(FV),and grouting volume(GV)have strong correlations with advancing speed(AS).An empirical formula is constructed based on the high-correlation influential factors and their corresponding field datasets.Finally,the prediction performances of the intelligent models and the empirical method are compared.The results reveal that all the intelligent models perform better than the empirical method. 展开更多
关键词 EPB shield machine Advancing speed prediction Intelligent models Empirical analysis Tunnel excavation
下载PDF
Prediction of line-spectrum noise induced by high speed vehicle counter-rotation propellers in water
20
作者 ZHU Xiqing WU Wusheng(China Ship Scientific Research Center Jiangsu 214082) 《Chinese Journal of Acoustics》 1998年第1期37-48,共12页
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact... Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory. 展开更多
关键词 LINE prediction of line-spectrum noise induced by high speed vehicle counter-rotation propellers in water high
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部