The high-order spectrum can effectively remove Gaussian noise. The three-spectrum and its slices represent random signals from a higher probability structure. It can not only qualitatively describe the linearity and n...The high-order spectrum can effectively remove Gaussian noise. The three-spectrum and its slices represent random signals from a higher probability structure. It can not only qualitatively describe the linearity and nonlinearity of vibration signals closely related to mechanical failures, Gaussian and non-Gaussian Performance, and can greatly i</span><span style="font-family:Verdana;"></span><span style="font-family:"">mprove the accuracy of mechanical fault diagnosis. The two-dimensional slices of trispectrum in normal and fault states show different peak characteristics. 2-D wavelet multi-level decomposition can effectively compress 2-D array information. Least squares support vector machine can obtain the global optimum under limited samples, thus avoiding the local optimum problem, and has the advantage of reducing computational complexity. In this paper, 2-D wavelet multi-level decomposition is used to extract features of trispectrum 2-D slices, and input LSSVM to diagnose the fault of the pressure reducing valve, which has achieved good results.展开更多
文摘The high-order spectrum can effectively remove Gaussian noise. The three-spectrum and its slices represent random signals from a higher probability structure. It can not only qualitatively describe the linearity and nonlinearity of vibration signals closely related to mechanical failures, Gaussian and non-Gaussian Performance, and can greatly i</span><span style="font-family:Verdana;"></span><span style="font-family:"">mprove the accuracy of mechanical fault diagnosis. The two-dimensional slices of trispectrum in normal and fault states show different peak characteristics. 2-D wavelet multi-level decomposition can effectively compress 2-D array information. Least squares support vector machine can obtain the global optimum under limited samples, thus avoiding the local optimum problem, and has the advantage of reducing computational complexity. In this paper, 2-D wavelet multi-level decomposition is used to extract features of trispectrum 2-D slices, and input LSSVM to diagnose the fault of the pressure reducing valve, which has achieved good results.