The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg...The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.展开更多
Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many s...Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.展开更多
This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal p...This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal processing. The method improves theperformance of conventional voltage-based and current-based techniques, because the impedance or admittance harmonics is independent of input or output of motor system due to the system-inherent nature of impedance. It has been used successfully in detecting the rotor speed of three-phase induction motors. A comparison between the proposed method and the conventionalcurrent-based method is also demonstrated.展开更多
文摘The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.
文摘Vehicular Ad Hoc Network (VANET) has emerged as a new wireless network for vehicular communications. To provide a flexible and high reliable communication service in VANET, vehicles are clustered to construct many small networks (clusters) so that channel interferences and flooding messages can be limited. This research presents a novel Multi-Resolution Relative Speed Detection (MRSD) model to improve the clustering algorithm in VANET without using Global Positioning System (GPS). MRSD uses the Moving Average Convergence Divergence (MACD), the Momentum of Received Signal Strength (MRSS), and Artificial Neural Networks (ANNs) to estimate the motion state and the relative speed of a vehicle based purely on Received Signal Strength. The proposed MRSD model is accurate with the assistance of the intelligent classification, and incurs less overhead in the cluster head election than that of other algorithms.
文摘This paper presents a new sensorless method, the so-called harmonic impedance / admittance, for detecting speed of induction motors, which is based on the impedance measurement, harmonic analysis and digital signal processing. The method improves theperformance of conventional voltage-based and current-based techniques, because the impedance or admittance harmonics is independent of input or output of motor system due to the system-inherent nature of impedance. It has been used successfully in detecting the rotor speed of three-phase induction motors. A comparison between the proposed method and the conventionalcurrent-based method is also demonstrated.