Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.展开更多
A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which ...A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment: selecting an appropriate coefficient of an initial state or changing the memory degree of environments.展开更多
The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity ...The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401(2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit(QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubitinitial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states,where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case.展开更多
Since the evolution of a mixed state in a unitary system is equivalent to the joint evolution of the eigenvectors contained in it,we could use the tool of instantaneous angular velocity for pure states to study the qu...Since the evolution of a mixed state in a unitary system is equivalent to the joint evolution of the eigenvectors contained in it,we could use the tool of instantaneous angular velocity for pure states to study the quantum speed limit(QSL)of a mixed state.We derive a lower bound for the evolution time of a mixed state to a target state in a unitary system,which automatically reduces to the quantum speed limit induced by the Fubini–Study metric for pure states.The computation of the QSL of a degenerate mixed state is more complicated than that of a non-degenerate mixed state,where we have to make a singular value decomposition(SVD)on the inner product between the two eigenvector matrices of the initial and target states.By combing these results,a lower bound for the evolution time of a general mixed state is presented.In order to compare the tightness among the lower bound proposed here and lower bounds reported in the references,two examples in a single-qubit system and in a single-qutrit system are studied analytically and numerically,respectively.All conclusions derived in this work are independent of the eigenvalues of the mixed state,which is in accord with the evolution properties of a quantum unitary system.展开更多
Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on tra...Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment.Accordingly,the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis.Moreover,the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.展开更多
To develop an equation between discrete degree of speed and traffic accident on freeway in China and give reasonable suggestions of speed management, the relation model was established between speed standard deviation...To develop an equation between discrete degree of speed and traffic accident on freeway in China and give reasonable suggestions of speed management, the relation model was established between speed standard deviation and accident rate per 100,000,000 vehicle kilometers by regression analysis. The model shows that the more discrete is the speed distribution, the higher is the accident rate, which provides theoretical gist for speed limit on freeway. It is suggested that speed limit should be set according to 85th percentile speed obtained by the relationship between 85th percentile speed and RCCs (curvature change rate of single circular curve), and different speed limits should be set for cars and trucks. Through analyzing spot speed data of eight freeways in China, regression models were established between 85th percentile speed and RCCs and 15th percentile speed and RCCs. Reasonable speed limit suggestion values are put forward through these models.展开更多
Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading form...Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.展开更多
The maximum delivery pressure and the maximum rotational speed determine the power density of axial piston pumps.However,increasing the speed beyond the limit always accompanies cavitation,leading to the decrease of t...The maximum delivery pressure and the maximum rotational speed determine the power density of axial piston pumps.However,increasing the speed beyond the limit always accompanies cavitation,leading to the decrease of the volumetric efficiency.The pressure loss in the suction duct is considered a significant reason for the cavitation.Therefore,this paper proposes a methodology to optimize the shape of the suction duct aiming at reducing the intensity of cavitation and increasing the speed limit.At first,a computational fluid dynamics(CFD)model based on the full cavitation model(FCM)is developed to simulate the fluid field of the axial piston pump and a test rig is set to validate the model.Then the topology optimization is conducted for obtaining the minimum pressure loss in the suc-tion duct.Comparing the original suction duct with the optimized one in the simulation model,the pressure loss in the suction duct gets considerable reduction,which eases the cavitation intensity a lot.The simulation results prove that the speed limit can increase under several different inlet pressures.展开更多
A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and incr...A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.展开更多
Quantum speed limit time and entanglement in a system composed of coupled quantum dots are investigated.The excess electron spin in each quantum dot constitutes the physical system(qubit).Also the spin interaction is ...Quantum speed limit time and entanglement in a system composed of coupled quantum dots are investigated.The excess electron spin in each quantum dot constitutes the physical system(qubit).Also the spin interaction is modeled through the Heisenberg model and the spins are imposed by an external magnetic field.Taking into account the spin relaxation as a non-Markovian process,the quantum speed limit and entanglement evolution are discussed.Our findings reveal that increasing the magnetic field leads to the faster quantum evolution.In addition,the temperature increment causes the longer quantum speed limit time as well as the entanglement degradation.展开更多
The quantum speed limit time for quantum system under squeezed environment is studied.We consider two typical models,the damped Jaynes-Cummings model and the dephasing model.For the damped Jaynes-Cummings model under ...The quantum speed limit time for quantum system under squeezed environment is studied.We consider two typical models,the damped Jaynes-Cummings model and the dephasing model.For the damped Jaynes-Cummings model under squeezed environment,we find that the quantum speed limit time becomes larger with the squeezed parameter r increasing and indicates symmetry about the phase parameter valueθ=π.Meanwhile,the quantum speed limit time can also be influenced by the coupling strength between the system and environment.However,the quantum speed limit time for the dephasing model is determined by the dephasing rate and the boundary of acceleration region that interacting with vacuum reservoir can be broken when the squeezed environment parameters are appropriately chosen.展开更多
Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated.The physical system studied is the excess electron spin in two adjacent quantum dot...Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated.The physical system studied is the excess electron spin in two adjacent quantum dots.The influences of magnetic field inhomogeneity as well as spin-orbit coupling are studied.Moreover,the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process.The spin-orbit interaction provides two important features:the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.展开更多
The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT...The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT)type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time.The increase of decoherence rate can weaken the capacity for potential speedup(CPS)and delay the evolving process due to the frequently measurement localizing the electron in the DQD system.The system needs longer time to evolve to the target state as the enhancement of dephasing rate,because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron.Increasing the dephasing rate can sharp the QSL bound,but the decoherence rate would weaken the former effect and vice versa.Moreover,the CPS would be raised by increasing the energy displacement,while the enhancement of the coupling strength between two quantum dots can diminish it.It is interesting that there has an inflection point,when the coupling strength is less than the value of the point,the increasing effect of the CPS from the energy displacement is dominant,otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point.Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.展开更多
The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the qua...The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the quantumto-classical transition in phase space based on the trace distance.The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time-dependent evolution for both the quantum and classical domains.As an example,the time-dependent harmonic oscillator is considered to illustrate the result.展开更多
We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the eff...We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.展开更多
For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the q...For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit--cavity detuning A and the qubit-cavity coupling strength k on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning zl and , two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength k or detuning A in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.展开更多
We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes h...We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes have different influences on the evolutionary speed. By adjusting the feedback parameters, the quantum-jump-based feedback control can induce speedup of the atomic evolution from an excited state, but the homodyne-based feedback control cannot change the evolutionary speed. Additionally, the QSLT for the whole dynamical process is explored. Under the quantum-jump-based feedback control, the QSLT displays oscillatory behaviors, which implies multiple speed-up and speed-down processes during the evolution. While, the homodyne-based feedback control can accelerate the speed-up process and improve the uniform speed in the uniform evolution process.展开更多
The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study ...The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence.For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence.展开更多
As is well known,the quantum evolution speed of quantum state can never be accelerated in the Markovian regime without any operators on the system.The Hamiltonian corrections induced by the action of coherent driving ...As is well known,the quantum evolution speed of quantum state can never be accelerated in the Markovian regime without any operators on the system.The Hamiltonian corrections induced by the action of coherent driving forces are often used to fight dissipative and decoherence mechanisms in experiments.For this reason,considering three noisy channels(the phase-flip channel,the amplitude damping channel and the depolarizing channel),we propose a scheme of speedup evolution of an open system by controlling an external unitary coherent driving operator on the system.It is shown that,in the presence of the coherent driving,no-speedup evolution can be transformed into quantum speedup evolution in the Markovian dynamics process.Additionally,under the fixed coherent driving strength in the above three noisy channels,the best way to achieve the most degree of quantum speedup for the system has been acquired by rotating the system with appropriate driving direction angles,respectively.Finally,we conclude that the reason for this acceleration is not the nonMarkovian dynamical behavior of the system but due to the oscillation of geometric distance between the initial state and the target final state.展开更多
Setting reliable speed limits on roads has always been a challenging process of designers and road agencies. In this paper the results of a methodology for setting speed limits on rural roads of all categories in Gree...Setting reliable speed limits on roads has always been a challenging process of designers and road agencies. In this paper the results of a methodology for setting speed limits on rural roads of all categories in Greece is presented based on international research and an extensive drivers attitudes' survey. The 85th percentile speed has proven in this case to be the decisive criterion for establishing reliable speed limits or advisory speeds in most cases. The resulted 10 km/la increase in legal speed limits on freeways and express rural highways did not validate any fears that accident rates or frequencies would increase. On the contrary an 8% decrease of crashes was observed in a period of about three years after the implementation of the increased speed limits level on the rural highway network of the country.展开更多
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.
基金supported by the EU FP7 Marie–Curie Career Integration Fund(Grant No.631883)the Royal Society Research Fund(Grant No.RG150036)the Fundamental Research Fund for the Central Universities,China(Grant No.2018IB010)
文摘A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the "quantum speed-up capacity" which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment: selecting an appropriate coefficient of an initial state or changing the memory degree of environments.
基金supported by the National Natural Science Foundation of China(Grants Nos.61505053 and 61475045)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3092)+2 种基金the School Foundation from the Hunan University of Arts and Science(Grant No.14ZD01)the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province,Chinathe Construction Program of the Key Discipline in Hunan University of Arts and Science(Optics)
文摘The speed of evolution of a qubit undergoing a nonequilibrium environment with spectral density of general ohmic form is investigated. First we reveal non-Markovianity of the model, and find that the non-Markovianity quantified by information backflow of Breuer et al. [Phys. Rev. Lett. 103 210401(2009)] displays a nonmonotonic behavior for different values of the ohmicity parameter s in fixed other parameters and the maximal non-Markovianity can be achieved at a specified value s. We also find that the non-Markovianity displays a nonmonotonic behavior with the change of a phase control parameter. Then we further discuss the relationship between quantum speed limit(QSL) time and non-Markovianity of the open-qubit system for any initial states including pure and mixed states. By investigation, we find that the QSL time of a qubit with any initial states can be expressed by a simple factorization law: the QSL time of a qubit with any qubitinitial states are equal to the product of the coherence of the initial state and the QSL time of maximally coherent states,where the QSL time of the maximally coherent states are jointly determined by the non-Markovianity, decoherence factor and a given driving time. Moreover, we also find that the speed of quantum evolution can be obviously accelerated in the wide range of the ohmicity parameter, i.e., from sub-Ohmic to Ohmic and super-Ohmic cases, which is different from the thermal equilibrium environment case.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11664018,12174247,and U2031145)。
文摘Since the evolution of a mixed state in a unitary system is equivalent to the joint evolution of the eigenvectors contained in it,we could use the tool of instantaneous angular velocity for pure states to study the quantum speed limit(QSL)of a mixed state.We derive a lower bound for the evolution time of a mixed state to a target state in a unitary system,which automatically reduces to the quantum speed limit induced by the Fubini–Study metric for pure states.The computation of the QSL of a degenerate mixed state is more complicated than that of a non-degenerate mixed state,where we have to make a singular value decomposition(SVD)on the inner product between the two eigenvector matrices of the initial and target states.By combing these results,a lower bound for the evolution time of a general mixed state is presented.In order to compare the tightness among the lower bound proposed here and lower bounds reported in the references,two examples in a single-qubit system and in a single-qutrit system are studied analytically and numerically,respectively.All conclusions derived in this work are independent of the eigenvalues of the mixed state,which is in accord with the evolution properties of a quantum unitary system.
基金Project supported by the Guangxi Natural Science Foundation,China(Grant No.2022GXNSFDA035080)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.Guike ZY22096024)the National Natural Science Foundation,China(Grant No.61963008).
文摘Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment.Accordingly,the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis.Moreover,the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.
基金Special Research Fund for Doctoral Program of Higher Education of China(Grant No.20030213030)
文摘To develop an equation between discrete degree of speed and traffic accident on freeway in China and give reasonable suggestions of speed management, the relation model was established between speed standard deviation and accident rate per 100,000,000 vehicle kilometers by regression analysis. The model shows that the more discrete is the speed distribution, the higher is the accident rate, which provides theoretical gist for speed limit on freeway. It is suggested that speed limit should be set according to 85th percentile speed obtained by the relationship between 85th percentile speed and RCCs (curvature change rate of single circular curve), and different speed limits should be set for cars and trucks. Through analyzing spot speed data of eight freeways in China, regression models were established between 85th percentile speed and RCCs and 15th percentile speed and RCCs. Reasonable speed limit suggestion values are put forward through these models.
基金Project supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,ChinaProject(2012QNZT029) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2010ybfz088) supported by the Foundation of Excellent Doctoral Dissertation of Central South University,China
文摘Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.
基金Supported by National Key R&D Program of China(Grant No.2019YFB2004504).
文摘The maximum delivery pressure and the maximum rotational speed determine the power density of axial piston pumps.However,increasing the speed beyond the limit always accompanies cavitation,leading to the decrease of the volumetric efficiency.The pressure loss in the suction duct is considered a significant reason for the cavitation.Therefore,this paper proposes a methodology to optimize the shape of the suction duct aiming at reducing the intensity of cavitation and increasing the speed limit.At first,a computational fluid dynamics(CFD)model based on the full cavitation model(FCM)is developed to simulate the fluid field of the axial piston pump and a test rig is set to validate the model.Then the topology optimization is conducted for obtaining the minimum pressure loss in the suc-tion duct.Comparing the original suction duct with the optimized one in the simulation model,the pressure loss in the suction duct gets considerable reduction,which eases the cavitation intensity a lot.The simulation results prove that the speed limit can increase under several different inlet pressures.
基金Project(2012CB725400)supported by the National Key Basic Research Program of ChinaProject(2011AA110303)supported by the National High Technology Research and Development Program of ChinaProject(YBPY1211)supported by the Scientific Research Foundation of the Graduate School of Southeast University,China
文摘A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.
文摘Quantum speed limit time and entanglement in a system composed of coupled quantum dots are investigated.The excess electron spin in each quantum dot constitutes the physical system(qubit).Also the spin interaction is modeled through the Heisenberg model and the spins are imposed by an external magnetic field.Taking into account the spin relaxation as a non-Markovian process,the quantum speed limit and entanglement evolution are discussed.Our findings reveal that increasing the magnetic field leads to the faster quantum evolution.In addition,the temperature increment causes the longer quantum speed limit time as well as the entanglement degradation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775040)the Scientific and Technological Innovation Program of the Higher Education Institutions of Shanxi Province,China(Grant No.2019L0527).
文摘The quantum speed limit time for quantum system under squeezed environment is studied.We consider two typical models,the damped Jaynes-Cummings model and the dephasing model.For the damped Jaynes-Cummings model under squeezed environment,we find that the quantum speed limit time becomes larger with the squeezed parameter r increasing and indicates symmetry about the phase parameter valueθ=π.Meanwhile,the quantum speed limit time can also be influenced by the coupling strength between the system and environment.However,the quantum speed limit time for the dephasing model is determined by the dephasing rate and the boundary of acceleration region that interacting with vacuum reservoir can be broken when the squeezed environment parameters are appropriately chosen.
文摘Quantum speed limit and entanglement of a two-spin Heisenberg XYZ system in an inhomogeneous external magnetic field are investigated.The physical system studied is the excess electron spin in two adjacent quantum dots.The influences of magnetic field inhomogeneity as well as spin-orbit coupling are studied.Moreover,the spin interaction with surrounding magnetic environment is investigated as a non-Markovian process.The spin-orbit interaction provides two important features:the formation of entanglement when two qubits are initially in a separated state and the degradation and rebirth of the entanglement.
基金the National Natural Science Foundation of China(Grant No.11974217)。
文摘The quantum speed limit(QSL)of the double quantum dot(DQD)system has been theoretically investigated by adopting the detection of the quantum point contact(QPC)in the pure dephasing environment.The Mandelstam–Tamm(MT)type of the QSL bound which is based on the trace distance has been extended to the DQD system for calculating the shortest evolving time.The increase of decoherence rate can weaken the capacity for potential speedup(CPS)and delay the evolving process due to the frequently measurement localizing the electron in the DQD system.The system needs longer time to evolve to the target state as the enhancement of dephasing rate,because the strong interaction between pure dephasing environment and the DQD system could vary the oscillation of the electron.Increasing the dephasing rate can sharp the QSL bound,but the decoherence rate would weaken the former effect and vice versa.Moreover,the CPS would be raised by increasing the energy displacement,while the enhancement of the coupling strength between two quantum dots can diminish it.It is interesting that there has an inflection point,when the coupling strength is less than the value of the point,the increasing effect of the CPS from the energy displacement is dominant,otherwise the decreasing tendency of the CPS is determined by the coupling strength and suppress the action of the energy displacement if the coupling strength is greater than the point.Our results provide theoretical reference for studying the QSL time in a semiconductor device affected by numerous factors.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775040)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China(Grant No.2019L0527)the Fundamental Research Fund for the Central Universities of China(Grant No.DUT18LK45).
文摘The classical version of Mandelstam-Tamm speed limit based on theWigner function in phase space was reported by Shanahan et al.[Phys.Rev.Lett.120070401(2018)].We present the Margolus-Levitin speed limit across the quantumto-classical transition in phase space based on the trace distance.The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time-dependent evolution for both the quantum and classical domains.As an example,the time-dependent harmonic oscillator is considered to illustrate the result.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175029)the Fundamental Research Program of Shanxi Province,China(Grant No.20210302123063)。
文摘We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647171,61675115,and 91536108)
文摘For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit--cavity detuning A and the qubit-cavity coupling strength k on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning zl and , two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength k or detuning A in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374096)Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2017B177)the Scientific Research Project of Hunan Provincial Education Department,China(Grant No.16C0949)
文摘We investigate the quantum speed limit time (QSLT) of a two-level atom under quantum-jump-based feedback control or homodyne-based feedback control. Our results show that the two different feedback control schemes have different influences on the evolutionary speed. By adjusting the feedback parameters, the quantum-jump-based feedback control can induce speedup of the atomic evolution from an excited state, but the homodyne-based feedback control cannot change the evolutionary speed. Additionally, the QSLT for the whole dynamical process is explored. Under the quantum-jump-based feedback control, the QSLT displays oscillatory behaviors, which implies multiple speed-up and speed-down processes during the evolution. While, the homodyne-based feedback control can accelerate the speed-up process and improve the uniform speed in the uniform evolution process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178012 and 11304179)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20123705120002 and 20133705110001)+1 种基金the Natural Science Foundation of Shandong Province of China(Grant No.ZR2014AP009)the Scientific Research Foundation of Qufu Normal University
文摘The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence.For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2020MA086)the National Natural Science Foundation of China(Grant Nos.61675115 and 11974209)。
文摘As is well known,the quantum evolution speed of quantum state can never be accelerated in the Markovian regime without any operators on the system.The Hamiltonian corrections induced by the action of coherent driving forces are often used to fight dissipative and decoherence mechanisms in experiments.For this reason,considering three noisy channels(the phase-flip channel,the amplitude damping channel and the depolarizing channel),we propose a scheme of speedup evolution of an open system by controlling an external unitary coherent driving operator on the system.It is shown that,in the presence of the coherent driving,no-speedup evolution can be transformed into quantum speedup evolution in the Markovian dynamics process.Additionally,under the fixed coherent driving strength in the above three noisy channels,the best way to achieve the most degree of quantum speedup for the system has been acquired by rotating the system with appropriate driving direction angles,respectively.Finally,we conclude that the reason for this acceleration is not the nonMarkovian dynamical behavior of the system but due to the oscillation of geometric distance between the initial state and the target final state.
文摘Setting reliable speed limits on roads has always been a challenging process of designers and road agencies. In this paper the results of a methodology for setting speed limits on rural roads of all categories in Greece is presented based on international research and an extensive drivers attitudes' survey. The 85th percentile speed has proven in this case to be the decisive criterion for establishing reliable speed limits or advisory speeds in most cases. The resulted 10 km/la increase in legal speed limits on freeways and express rural highways did not validate any fears that accident rates or frequencies would increase. On the contrary an 8% decrease of crashes was observed in a period of about three years after the implementation of the increased speed limits level on the rural highway network of the country.