Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration whe...Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.展开更多
针对传统SURF算法(speeded up robust features)在拼接高分辨率无人机航拍图像时运行速度慢、特征匹配率低的特点,提出了一种基于IB-SURF(image block-SURF)技术的无人机图像拼接算法。结合无人机定位定姿系统(position and orientation...针对传统SURF算法(speeded up robust features)在拼接高分辨率无人机航拍图像时运行速度慢、特征匹配率低的特点,提出了一种基于IB-SURF(image block-SURF)技术的无人机图像拼接算法。结合无人机定位定姿系统(position and orientation system,POS)求取图像重叠区域;构造掩模在无人机图像重叠区域检测特征点,减少特征提取时间;借助图像分块(image block,IB)的思想对图像划分网格,精简筛选特征点;引入Neighborhood-KNN(neighborhood-K nearest neighbors)进行特征点匹配,提高图像匹配效率。实验结果表明,IB-SURF算法有较快的运行速度和较高的特征匹配率,平均特征匹配率达到84.3%,特征匹配正确率超过95.1%,为图像高质量拼接提供了技术基础。展开更多
针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(f...针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。展开更多
针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能...针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。展开更多
为解决车辆压线行驶或发生交通事故时占用多个车道而无法采集到完整的车辆图像问题,基于SURF(speed up robust features)算法和最佳缝合线的思想,提出一种车道图像序列拼接方法。首先根据车辆运动轨迹提出寻找最优对应图像算法,用于找...为解决车辆压线行驶或发生交通事故时占用多个车道而无法采集到完整的车辆图像问题,基于SURF(speed up robust features)算法和最佳缝合线的思想,提出一种车道图像序列拼接方法。首先根据车辆运动轨迹提出寻找最优对应图像算法,用于找出近似同步拍摄图像;然后用SURF检测图像中的关键点对图像进行粗配准,用RANSAC方法去除误配准点实现精配准;最后利用最佳缝合线方法沿图像的重叠区域进行分割拼接。实验表明:利用车道图像序列拼接方法能找出近似同步拍摄图像,准确计算出图像的重叠区域,避免缝合线经过运动区域,解决了拼接过程中产生的重影、裂缝等问题,合成了质量较高的多车道图像,以此确保获得完整的车辆图像。展开更多
基金supported by the National Natural Science Foundation of China (60802043)the National Basic Research Program of China(973 Program) (2010CB327900)
文摘Local invariant algorithm applied in downward-looking image registration,usually computes the camera's pose relative to visual landmarks.Generally,there are three requirements in the process of image registration when using these approaches.First,the algorithm is apt to be influenced by illumination.Second,algorithm should have less computational complexity.Third,the depth information of images needs to be estimated without other sensors.This paper investigates a famous local invariant feature named speeded up robust feature(SURF),and proposes a highspeed and robust image registration and localization algorithm based on it.With supports from feature tracking and pose estimation methods,the proposed algorithm can compute camera poses under different conditions of scale,viewpoint and rotation so as to precisely localize object's position.At last,the study makes registration experiment by scale invariant feature transform(SIFT),SURF and the proposed algorithm,and designs a method to evaluate their performances.Furthermore,this study makes object retrieval test on remote sensing video.For there is big deformation on remote sensing frames,the registration algorithm absorbs the Kanade-Lucas-Tomasi(KLT) 3-D coplanar calibration feature tracker methods,which can localize interesting targets precisely and efficiently.The experimental results prove that the proposed method has a higher localization speed and lower localization error rate than traditional visual simultaneous localization and mapping(vSLAM) in a period of time.
文摘针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。
文摘针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。
文摘为解决车辆压线行驶或发生交通事故时占用多个车道而无法采集到完整的车辆图像问题,基于SURF(speed up robust features)算法和最佳缝合线的思想,提出一种车道图像序列拼接方法。首先根据车辆运动轨迹提出寻找最优对应图像算法,用于找出近似同步拍摄图像;然后用SURF检测图像中的关键点对图像进行粗配准,用RANSAC方法去除误配准点实现精配准;最后利用最佳缝合线方法沿图像的重叠区域进行分割拼接。实验表明:利用车道图像序列拼接方法能找出近似同步拍摄图像,准确计算出图像的重叠区域,避免缝合线经过运动区域,解决了拼接过程中产生的重影、裂缝等问题,合成了质量较高的多车道图像,以此确保获得完整的车辆图像。