This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m...This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models.展开更多
We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the rel...We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the relations among economic growth, aviation demand, the frequency of aircraft/helicopter accidents, the major characteristics of the occurrence intervals of accidents, and the number of fatalities due to accidents. The statistical model analysis suggests that the occurrence intervals of accidents and the number of fatalities can be explained by probability distributions such as the exponential distribution and the negative binomial distribution, respectively. We show that countermeasures for preventing accidents have been developed in every aircraft model, and thus they have contributed to a significant decrease in the number of accidents in the last three decades. We find that the major cause of accidents involving large airplanes has been weather, while accidents involving small airplanes and helicopters are mainly due to the pilot error. We also discover that, with respect to accidents mainly due to pilot error, there is a significant decrease in the number of accidents due to the aging of airplanes, whereas the number of accidents due to weather has barely declined. We further determine that accidents involving small and large airplanes mostly occur during takeoff and landing, whereas those involving helicopters are most likely to happen during flight. In order to decrease the number of accidents, i) enhancing safety and security by further developing technologies for aircraft, airports and air control radars, ii) establishing and improving training methods for crew including pilots, mechanics and traffic controllers, iii) tightening public rules, and iv) strengthening efforts made by individual aviation-related companies are absolutely necessary.展开更多
文摘This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models.
文摘We investigate the major characteristics of the occurrences, causes of and counter measures for aircraft accidents in Japan. We apply statistical data analysis and mathematical modeling techniques to determine the relations among economic growth, aviation demand, the frequency of aircraft/helicopter accidents, the major characteristics of the occurrence intervals of accidents, and the number of fatalities due to accidents. The statistical model analysis suggests that the occurrence intervals of accidents and the number of fatalities can be explained by probability distributions such as the exponential distribution and the negative binomial distribution, respectively. We show that countermeasures for preventing accidents have been developed in every aircraft model, and thus they have contributed to a significant decrease in the number of accidents in the last three decades. We find that the major cause of accidents involving large airplanes has been weather, while accidents involving small airplanes and helicopters are mainly due to the pilot error. We also discover that, with respect to accidents mainly due to pilot error, there is a significant decrease in the number of accidents due to the aging of airplanes, whereas the number of accidents due to weather has barely declined. We further determine that accidents involving small and large airplanes mostly occur during takeoff and landing, whereas those involving helicopters are most likely to happen during flight. In order to decrease the number of accidents, i) enhancing safety and security by further developing technologies for aircraft, airports and air control radars, ii) establishing and improving training methods for crew including pilots, mechanics and traffic controllers, iii) tightening public rules, and iv) strengthening efforts made by individual aviation-related companies are absolutely necessary.