Waste-to-Energy treatment is a promising path to environment and energy management in the future.This work detailed a binary molten salt thermal treatment methodology for the detoxification of spent cathode carbon blo...Waste-to-Energy treatment is a promising path to environment and energy management in the future.This work detailed a binary molten salt thermal treatment methodology for the detoxification of spent cathode carbon block(SCCB)waste and the recycling of carbonaceous materials.The thermal behavior of SCCB and SCCB blended with molten salts was investigated.It was found that the NaCl-Na_(2)CO_(3)binary molten salts significantly contributed to reducing pyrolysis onset temperature by 334.3 K compared to that of SCCB itself(i.e.,activation energy of pyrolysis reaction was reduced from 4.24×10^(5)to 2.30×10^(5)J/mol),thus helping to lower thermal treatment energy consumption.With the addition of binary molten salts,the residue after thermal treatment in a horizontal tube furnace experiment was separated into two layers.The bottom-layer residue was mainly composed of molten salts.The fluorine content in the form of NaF and CaF_(2)of top-layer residue was reduced significantly while the carbon content remained unchanged.Specifically,the leaching concentration of fluoride ion was decreased from 4620 mg/L to 856 mg/L.It is noted that the NaF and CaF_(2)can be removed through water-leaching and hydrothermal acid-leaching methods and thus the carbonaceous materials with a calorific value of 17.5 MJ/kg were obtained.展开更多
基金supported by the"CUG Scholar"scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2020088)National Natural Science Foundation of China(No.41920104007)Opening Fund of State Key Laboratory of Fire Science,University of Science and Technology of China(No.HZ2023-KF03)。
文摘Waste-to-Energy treatment is a promising path to environment and energy management in the future.This work detailed a binary molten salt thermal treatment methodology for the detoxification of spent cathode carbon block(SCCB)waste and the recycling of carbonaceous materials.The thermal behavior of SCCB and SCCB blended with molten salts was investigated.It was found that the NaCl-Na_(2)CO_(3)binary molten salts significantly contributed to reducing pyrolysis onset temperature by 334.3 K compared to that of SCCB itself(i.e.,activation energy of pyrolysis reaction was reduced from 4.24×10^(5)to 2.30×10^(5)J/mol),thus helping to lower thermal treatment energy consumption.With the addition of binary molten salts,the residue after thermal treatment in a horizontal tube furnace experiment was separated into two layers.The bottom-layer residue was mainly composed of molten salts.The fluorine content in the form of NaF and CaF_(2)of top-layer residue was reduced significantly while the carbon content remained unchanged.Specifically,the leaching concentration of fluoride ion was decreased from 4620 mg/L to 856 mg/L.It is noted that the NaF and CaF_(2)can be removed through water-leaching and hydrothermal acid-leaching methods and thus the carbonaceous materials with a calorific value of 17.5 MJ/kg were obtained.