In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0...The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.展开更多
According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarator...According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).展开更多
This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid ...This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D ele...The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.展开更多
AIM:To determine whether the levator palpebrae superioris(LPS)/superior rectus(SR)muscle complex,can influence the position of the upper lid and fornix in acquired anophthalmic sockets.METHODS:This comparative non-ran...AIM:To determine whether the levator palpebrae superioris(LPS)/superior rectus(SR)muscle complex,can influence the position of the upper lid and fornix in acquired anophthalmic sockets.METHODS:This comparative non-randomized and non-interventional study included retrospective data of 21 patients with unilateral acquired anophthalmic sockets repaired with spheric implants.High-resolution computed tomography(CT)measurements of the LPM/SR muscle complex and clinical topographic position of the upper lid,superior and inferior fornix depth in primary gaze position were evaluated.Demographic data were presented as frequency and percentage proportions and quantitative variables comparing the socket measurements with the normal contralateral orbit was statistically analyzed using non-parametric tests considering P<0.05.RESULTS:The anophthalmic orbits had a significantly shorter LPS length(P=0.01)and significantly thicker SR(P=0.02)than the normal orbit.Lagophthalmos was present in anophthalmic sockets but not in normal orbits(P=0.002),while levator function was normal in both(P>0.05,all comparisons).The superior fornix depth was similar in the anophthalmic socket and the contralateral normal orbit(P=0.192)as well the inferior fornix depth(P=0.351).CONCLUSION:Acquired anophthalmic sockets repaired with spheric implants have shorter LPS,thicker SR,and more lagophthalmos than normal orbits.The relationship of the LPS and SR with other orbital structures,associated with passive or active forces acting in the final position of the lids and external ocular prosthesis should be further investigated.展开更多
We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spira...We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.展开更多
Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Hel...Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .展开更多
BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimension...BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimensional asphericity of the femoral head of asymptomatic pediatric hips.We hypothesized that femoral head asphericity will vary significantly between male and female pediatric hips and increase with age in both sexes.METHODS Computed tomography scans were obtained on 158 children and adolescents from a single institution in the United States(8-18 years;50%male)without hip pain.Proximal femoral measurements including the femoral head diameter,femoral head volume,residual volume,asphericity index,and local diameter difference were used to evaluate femoral head sphericity.RESULTS In both sexes,the residual volume increased by age(P<0.05).Despite significantly smaller femoral head size in older ages(>13 years)in females,there were no sex-differences in residual volume and aspherity index.There were no age-related changes in mean diameter difference in both sexes(P=0.07)with no significant sex-differences across different age groups(P=0.06).In contrast,there were significant increases in local aspherity(maximum diameter difference)across whole surface of the femoral head and all quadrants except the inferior regions in males(P=0.03).There were no sex-differences in maximum diameter difference at any regions and age group(P>0.05).Increased alpha angle was only correlated to increased mean diameter difference across overall surface of the femoral head(P=0.024).CONCLUSION There is a substantial localized asphericity in asymptomatic hips which increases with age in.While 2D measured alpha angle can capture overall asphericity of the femoral head,it may not be sensitive enough to represent regional asphericity patterns.展开更多
Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience witho...Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me...Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.展开更多
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A...The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.展开更多
The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-ener...The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.展开更多
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ...In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency.展开更多
In this study, based on a two-potential approach, we systematically investigated the proton radioactivity half-lives of spherical proton emitters with 69≤Z≤81 from the ground and/or isomeric state, choosing the nucl...In this study, based on a two-potential approach, we systematically investigated the proton radioactivity half-lives of spherical proton emitters with 69≤Z≤81 from the ground and/or isomeric state, choosing the nuclear potential to be a modified Woods–Saxon potential that contains the isospin effect of the daughter nucleus. It was found that the calculated half-lives could reproduce the experimental data well. Furthermore, we extended this model to predict the half-lives of 17 protonemitting candidates whose radioactivity is energetically allowed or observed but not yet quantified in NUBASE2020. For comparison, the unified fission model, Coulomb potential and proximity potential model, universal decay law for proton emission, and new Geiger–Nuttall law were also used. All the predicted results are consistent with each other.展开更多
Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospray...Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospraying-ionotropic gelation technique to prepare multicore millimeter-sized spherical capsules for specific and sustained release of fish oil.The spherical capsules had diameters from 2.05 mm to 0.35 mm with the increased applied voltages.The capsules consisted of uniform(at applied voltages of≤10 k V)or nonuniform(at applied voltages of>10 k V)multicores.The obtained capsules had reasonable loading ratios(9.7%-6.3%)due to the multicore structure.In addition,the obtained capsules had specific and sustained release behaviors of fish oil into the small intestinal phase of in vitro gastrointestinal tract and small intestinal tract models.The simple monoaxial dispersion electrospraying-ionotropic gelatin technique does not involve complicated preparation formulations and polymer modification,which makes the technique has a potential application prospect for the fish oil preparations and the encapsulation of functional active substances in the field of food and drug industries.展开更多
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金Project supported by the National Natural Science Foundation of China(Nos.12132015 and 12372251)the Fundamental Research Funds for the Provincial Universities of Zhejiang of China(No.2023YW69)。
文摘The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03070000 and 2022YFE03070003)National Natural Science Foundation of China(Nos.12375220 and 12075114)。
文摘According to the physics of tokamak start-up,this study constructs a zero-dimensional(0D)model applicable to electron cyclotron(EC)wave assisted start-up in NCST spherical torus(spherical tokamak)and CN-H1 stellarators.Using the constructed 0D model,the results obtained in this study under the same conditions are compared and validated against reference results for pure hydrogen plasma start-up in tokamak.The results are in good agreement,especially regarding electron temperature,ion temperature and plasma current.In the presence of finite Ohmic electric field in the spherical tokamak,a study on the EC wave assisted start-up of the NCST plasma at frequency of 28 GHz is conducted.The impact of the vertical magnetic field B_(v)on EC wave assisted start-up,the relationship between EC wave injection power P_(inj),Ohmic electric field E,and initial hydrogen atom density n_(H0)are explored separately.It is found that under conditions of Ohmic electric field lower than ITER(~0.3 V m^(-1)),EC wave can expand the operational space to achieve better plasma parameters.Simulating the process of28 GHz EC wave start-up in the CN-H1 stellarator plasma,the plasma current in the zerodimensional model is replaced with the current in the poloidal coil of the stellarator.Plasma startup can be successfully achieved at injection powers in the hundreds of kilowatts range,resulting in electron densities on the order of 10^(17)-10^(18)m^(-3).
基金supported by the National Magnetic Confinement Fusion Energy Program of China (No.2018 YFE0311300)the High-End Talents Program of Hebei Province, Innovative Approaches Towards Development of Carbon-Free Clean Fusion Energy (No.2021HBQZYCSB 006)the Compact Fusion Project of the ENN Group。
文摘This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.
基金performed under the auspices of National Natural Science Foundation of China(No.11605244)supported by the High-End Talents Program of Hebei Province,Innovative Approaches towards Development of CarbonFree Clean Fusion Energy(No.2021HBQZYCSB006)。
文摘The electron cyclotron emission(ECE)diagnostic system has been developed on the ENN spherical torus(EXL-50).The ECE system is designed to detect radiation emitted by energetic electrons,rather than conventional 1D electron temperature profile measurement,in the frequency range of 4-40 GHz.The system is composed of five subsystems,each covering a different frequency band,including the C-band(4-8 GHz),X-band(8-12 GHz),Ku-band(12-18 GHz),K-band(18-26.5 GHz)and Kα-band(26.4-40 GHz).The system uses heterodyne detection to analyze the received signals.The K-band and Kα-band subsystems are located horizontally in the equatorial plane of the EXL-50,while the C-band,X-band and Ku-band subsystems are located under the vacuum vessel of the EXL-50.To direct the microwaves from the plasma to the antennas for the horizontal detection subsystems,a quasi-optical system has been developed.For the vertical detection subsystems,the antennas are directly attached to the port located beneath the torus at R=700 mm,which is also the magnetic axis of the torus.The system integration,bench testing and initial experimental results will be thoroughly discussed,providing a comprehensive understanding of the ECE system s performance and capabilities.
文摘AIM:To determine whether the levator palpebrae superioris(LPS)/superior rectus(SR)muscle complex,can influence the position of the upper lid and fornix in acquired anophthalmic sockets.METHODS:This comparative non-randomized and non-interventional study included retrospective data of 21 patients with unilateral acquired anophthalmic sockets repaired with spheric implants.High-resolution computed tomography(CT)measurements of the LPM/SR muscle complex and clinical topographic position of the upper lid,superior and inferior fornix depth in primary gaze position were evaluated.Demographic data were presented as frequency and percentage proportions and quantitative variables comparing the socket measurements with the normal contralateral orbit was statistically analyzed using non-parametric tests considering P<0.05.RESULTS:The anophthalmic orbits had a significantly shorter LPS length(P=0.01)and significantly thicker SR(P=0.02)than the normal orbit.Lagophthalmos was present in anophthalmic sockets but not in normal orbits(P=0.002),while levator function was normal in both(P>0.05,all comparisons).The superior fornix depth was similar in the anophthalmic socket and the contralateral normal orbit(P=0.192)as well the inferior fornix depth(P=0.351).CONCLUSION:Acquired anophthalmic sockets repaired with spheric implants have shorter LPS,thicker SR,and more lagophthalmos than normal orbits.The relationship of the LPS and SR with other orbital structures,associated with passive or active forces acting in the final position of the lids and external ocular prosthesis should be further investigated.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029)。
文摘We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
文摘Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .
文摘BACKGROUND The sphericity of the femoral head is a metric used to evaluate hip pathologies and is associated with the development of osteoarthritis and femoral-acetabular impingement.AIM To analyze the three-dimensional asphericity of the femoral head of asymptomatic pediatric hips.We hypothesized that femoral head asphericity will vary significantly between male and female pediatric hips and increase with age in both sexes.METHODS Computed tomography scans were obtained on 158 children and adolescents from a single institution in the United States(8-18 years;50%male)without hip pain.Proximal femoral measurements including the femoral head diameter,femoral head volume,residual volume,asphericity index,and local diameter difference were used to evaluate femoral head sphericity.RESULTS In both sexes,the residual volume increased by age(P<0.05).Despite significantly smaller femoral head size in older ages(>13 years)in females,there were no sex-differences in residual volume and aspherity index.There were no age-related changes in mean diameter difference in both sexes(P=0.07)with no significant sex-differences across different age groups(P=0.06).In contrast,there were significant increases in local aspherity(maximum diameter difference)across whole surface of the femoral head and all quadrants except the inferior regions in males(P=0.03).There were no sex-differences in maximum diameter difference at any regions and age group(P>0.05).Increased alpha angle was only correlated to increased mean diameter difference across overall surface of the femoral head(P=0.024).CONCLUSION There is a substantial localized asphericity in asymptomatic hips which increases with age in.While 2D measured alpha angle can capture overall asphericity of the femoral head,it may not be sensitive enough to represent regional asphericity patterns.
基金Key Research and Development Program of Guangdong Province (No.2020B0101130009)
文摘Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金The National Natural Science Foundation of China under contract No.42076214.
文摘Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects.
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
文摘The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.
基金supported by the Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.20fksy18)。
文摘The performance of the chemical fuel determines the altitude,range and longevity of spacecraft in air and space exploration.Promising alternatives(e.g.,hypergolic ionic liquids or high-energy composites)with high-energy density,heat of formation and fast initial rate are considered as potential chemical fuels.As the high-energy density material,hexanitrohexaazaisowurtzitane(CL-20)often serves as secondary explosive with poor self-propagating combustion behaviors.Herein,90%loading CL-20 microspheres with uniform particle sizes are precisely prepared by microfluid method,which exhibit unique hierarchical structure.The morphology,thermal behaviors,as well as combustion performance were further investigated.The results demonstrated that as-prepared spherical particles exhibit prominent thermal compatibility,and the enhanced self-sustaining combustion performance.This work provides an efficient method achieving the uniform high-energy density particles with excellent self-sustaining combustion performance.
文摘In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency.
基金supported in part by the National Natural Science Foundation of China(Nos. 12175100 and 11975132)the Construct Program of the Key Discipline in Hunan Province+4 种基金the Research Foundation of Education Bureau of Hunan Province,China(Nos. 21B0402 and 18A237)the Natural Science Foundation of Hunan Province, China(No. 2018JJ2321)the Innovation Group of Nuclear and Particle Physics in USC, the Shandong Province Natural Science Foundation, China(No. ZR2022JQ04)the Hunan Provincial Innovation Foundation for Postgraduates(No.CX20220993)the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No. 2019KFZ10)。
文摘In this study, based on a two-potential approach, we systematically investigated the proton radioactivity half-lives of spherical proton emitters with 69≤Z≤81 from the ground and/or isomeric state, choosing the nuclear potential to be a modified Woods–Saxon potential that contains the isospin effect of the daughter nucleus. It was found that the calculated half-lives could reproduce the experimental data well. Furthermore, we extended this model to predict the half-lives of 17 protonemitting candidates whose radioactivity is energetically allowed or observed but not yet quantified in NUBASE2020. For comparison, the unified fission model, Coulomb potential and proximity potential model, universal decay law for proton emission, and new Geiger–Nuttall law were also used. All the predicted results are consistent with each other.
基金supported by research grants from the National Key R&D Program(2019YFD0902003)。
文摘Specific and sustained release of nutrients from capsules to the gastrointestinal tract has attracted many attentions in the field of food and drug delivery.In this work,we reported a monoaxial dispersion electrospraying-ionotropic gelation technique to prepare multicore millimeter-sized spherical capsules for specific and sustained release of fish oil.The spherical capsules had diameters from 2.05 mm to 0.35 mm with the increased applied voltages.The capsules consisted of uniform(at applied voltages of≤10 k V)or nonuniform(at applied voltages of>10 k V)multicores.The obtained capsules had reasonable loading ratios(9.7%-6.3%)due to the multicore structure.In addition,the obtained capsules had specific and sustained release behaviors of fish oil into the small intestinal phase of in vitro gastrointestinal tract and small intestinal tract models.The simple monoaxial dispersion electrospraying-ionotropic gelatin technique does not involve complicated preparation formulations and polymer modification,which makes the technique has a potential application prospect for the fish oil preparations and the encapsulation of functional active substances in the field of food and drug industries.