Non-spherical of rotor was described with solution method. Electrostatically suspended gyroscope's hollow spherical rotor's structure was presented. The simulative analysis of static deformation, dynamic deformation...Non-spherical of rotor was described with solution method. Electrostatically suspended gyroscope's hollow spherical rotor's structure was presented. The simulative analysis of static deformation, dynamic deformation and synthesize deformation of rotor under different working conditions using the finite element software were carried out. Its deformation law and volume were obtained. The structural parameters of the rotor were optimized. The value of pressure required when the rotor was machined was calculated. The analysis has important theoretical reference value to the design for hollow spherical rotor in electrostatically suspended gyroscope.展开更多
In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular sta...In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.展开更多
基金supported by the Shandong Province Scientific Research Fund Project of Binzhou University under Grant No. BZXYLG200704
文摘Non-spherical of rotor was described with solution method. Electrostatically suspended gyroscope's hollow spherical rotor's structure was presented. The simulative analysis of static deformation, dynamic deformation and synthesize deformation of rotor under different working conditions using the finite element software were carried out. Its deformation law and volume were obtained. The structural parameters of the rotor were optimized. The value of pressure required when the rotor was machined was calculated. The analysis has important theoretical reference value to the design for hollow spherical rotor in electrostatically suspended gyroscope.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.