Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precu...Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In thi...FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In this paper the mesoporous spherical FeF3·0.33H2O/MWCNTs nanocomposite was successfully synthesized via a one-step solvothermal approach. Galvanostatic measurement showed that the performances of sodium ion batteries(SIBs) using FeF3·0.33H2O/MWCNTs as cathode material were highly dependent on the morphology and size of the as-prepared materials. Benefitting from the special mesoporous structure features, FeF3·0.33H2O/MWCNTs nanocomposite exhibits much better electrochemical performances in terms of initial discharge capacity(350.4 mAh g-1) and cycle performance(123.5 mAh g-1 after 50 cycles at 0.1 C range from 1.0 V to 4.0 V) as well as rate capacity(123.8 mAh g-1 after 25 cycles back to 0.1 C). The excellent electrochemical performance enhancement can be attributed to the synergistic effect of the mesoporous structure and the MWCNTs conductive network, which can effectively increase the contact area between the active materials and the electrolyte, shorten the Na+ diffusion pathway,buffer the volume change during cycling/discharge process and improve the structure stability of the FeF3·0.33H2O/MWCNTs nanocomposite.展开更多
An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account...An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.展开更多
Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel m...Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.展开更多
This paper studies the contact vibration problem of an elastic half-space coated with functionally graded materials(FGMs)subject to a rigid spherical punch.A static force superimposing a dynamic time-harmonic force ac...This paper studies the contact vibration problem of an elastic half-space coated with functionally graded materials(FGMs)subject to a rigid spherical punch.A static force superimposing a dynamic time-harmonic force acts on the rigid spherical punch.Firstly,we give the static contact problem of FGMs by a least-square fitting approach.Next,the dynamic contact pressure is solved by employing the perturbation method.Lastly,the dynamic contact stiffness with different dynamic contact displacement conditions is derived for the FGM coated half-space.The effects of the gradient index,coating thickness,internal friction,and punch radius on the dynamic contact stiffness factor are discussed in detail.展开更多
The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters ...The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters on the material removal rate when the spherical optical glasses are polished with different curvature radius, such as the decrement of the bonnet, the rotational speed of the bonnet and the curvature radius of the work-piece's surface using a bonnet trial-manufacturing machine developed by our assignment groups. In the end, the curvilinear relationships between these parameters and the material removal rate are acquired and the laws of the effects on material removal rate in bonnet polishing by several parameters are given. When the spherical-pieces are polished with smaller curvature radius, it is not proportional to either bonnet decrement or bonnet rotational speed as described by the Preston equation although the removal rate increases as the relative velocity or the applied pressure increases. Therefore, for the purpose of calculating more accurately the material removal of the spherical work-pieces, the Preston equation should be modified and studied further.展开更多
The effect Of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatur...The effect Of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatures are much lower than usual. In order to improve high-temperature performances, charge/discharge curves of the Ni(OH)(2) electrodes with different amounts Of Y2O3 it different temperatures were studied. It is found that the specific capacities of the spherical Ni (OH)(2) with Y2O3 as additive are much higher than those of the regular at higher temperatures. The specific capacity of Ni (OH)(2) containing 1% Y2O3 at 0.2C C/D rate is 35% higher than that of the regular. The specific capacity of Ni (OH)(2) containing 0.2% Y2O3 at 1C C/D rate is 15% higher than that of the regular. Mechanism Of Y2O3 improving high temperature performances of Ni(OH)(2) electrode was also discussed in detail.展开更多
A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials.Postulated conditio...A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials.Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius(radius≤200 μm)spherical indenter,respectively.And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle.Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness.The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials,while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials.Moreover,the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness,respectively.The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4,respectively.展开更多
A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIB...A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.展开更多
Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH valu...Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH value controlled at 4.0, and the temperature controlled at 50 ℃. Nickel particles with complicated morphology were prepared by the decomposition of nickel taratrate precursor particles at temperatures of 360, 380 and 400 ℃, respectively. The study of infrared spectroscopy (IR) indicated that the product was pure nickel tartrate. The studies of the atomic absorption spectrometry (AAS) and organic elemental analysis (OEA) indicated that the molar ratio of Ni2+ to (C4H4O6)2- is close to 1:1. The studies of the differential scanning calorimeter and thermo-gravimetric analysis (DSC-TG) indicated that the chemical formula Niz(C4H4O6) 2.5H2O was confirmed. The studies of X-ray diffractions (XRD) indicated that the silvery white metal powders were pure Ni, with a face-centered cubic crystal structure. The images of scanning electron microscopy (SEM) showed that the morphology of metal Ni particles was obvious spherical and radiate. The diameter of nickel tartrate particles was about 60 μm, which consisted of many nanolathes; and the diameter of metal Ni particles was about 30 μm, which consisted of many lathes about 0.5 μm in thickness.展开更多
Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, ...Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, strains, potential and electric displacement were derived Sram constitutive relations, geometric and motion equations for the piezoelectric medium under external excitation (i.e. applied surface traction and potential) in spherical coordinate system. As an application of the? general solutions, the problem of an elastic spherical shell with piezoelectric actuator and sensor layers was solved. The results could provide good theoretical basis for the spherical-symmetric dynamic control problem of piezoelectric intelligent structure. Furthermore, the solutions can serve as reference for the research of general dynamic control problem.展开更多
Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solven...Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solvent—antisolvent interaction(SAI) method at 70 ℃.The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically.Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy(FE-SEM) imaging.X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms,i.e.a and P,respectively.Thermogravimetric analysis coupled with differential scanning calorimetry(TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs.HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions.The mean particle size also varied considerably with the use of different solvents.展开更多
A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is...A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material,for which small shear rigidity is always inevitable for a real designed micro...The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material,for which small shear rigidity is always inevitable for a real designed microstructure.A theoretical formulation is developed to efficiently evaluate the cloaking performance.The generic scattering feature of the cloak and the efTects of material imperfectness and inner cloak boundary constraints are systematically examined.The preferable constraint type and the critical imperfectness parameter of the material are identified for possible broadband invisibility.In addition,a very practical lining shell scheme is proposed to tune the constraint strength on the inner boundary.By combining the theoretical model with optimization algorithm,it is further proved that the cloak can be reduced by several piecewiseuniform layers and optimized to achieve excellent invisibility in targeted frequency bands.The study will provide valuable guidance for the future microstructural design of cloaks.展开更多
At great depth ratio, two methodologies based on the representative strain were improved to extract mechanical properties of metallic engineering structural materials from P-h curve of an indentation response. The imp...At great depth ratio, two methodologies based on the representative strain were improved to extract mechanical properties of metallic engineering structural materials from P-h curve of an indentation response. The improved aspects include: the com- bination of great ratio h1/R=0.1 and h2/R=0.4 replaced h1/R=0.01 and h2/R=0.06 (Cao's method) and h1/R=0.1 and h2/R=0.3 (Ogasawara's method); three types of metallic engineering structural materials with obviously different elastic modulus were dealt with to get their calculation parameters, respectively; a new parameter reflecting the effect of work-hardening exponent n was introduced to get the dimensionless function which is independent of n and a relationship between W/(h3σrS) and E^*/(σrS) at great depth ratio. By using the results of finite element simulation, the efficiency and accuracy of the improved method have been proved, and it showed that the accuracv of the improved method is much better than the former method.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No.50134020)
文摘Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g-1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g-1. The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金supported financially by the National Natural Science Foundation of China under project (no. 51272221)the Key Project of Strategic New Industry of Hunan Province under project (nos. 2016GK4005 and 2016GK4030)
文摘FeF3·0.33H2O crystallizes in hexagonal tungsten bronze structure with more opened hexagonal cavities are considered as next generation electrode materials of both lithium ion battery and sodium ion battery.In this paper the mesoporous spherical FeF3·0.33H2O/MWCNTs nanocomposite was successfully synthesized via a one-step solvothermal approach. Galvanostatic measurement showed that the performances of sodium ion batteries(SIBs) using FeF3·0.33H2O/MWCNTs as cathode material were highly dependent on the morphology and size of the as-prepared materials. Benefitting from the special mesoporous structure features, FeF3·0.33H2O/MWCNTs nanocomposite exhibits much better electrochemical performances in terms of initial discharge capacity(350.4 mAh g-1) and cycle performance(123.5 mAh g-1 after 50 cycles at 0.1 C range from 1.0 V to 4.0 V) as well as rate capacity(123.8 mAh g-1 after 25 cycles back to 0.1 C). The excellent electrochemical performance enhancement can be attributed to the synergistic effect of the mesoporous structure and the MWCNTs conductive network, which can effectively increase the contact area between the active materials and the electrolyte, shorten the Na+ diffusion pathway,buffer the volume change during cycling/discharge process and improve the structure stability of the FeF3·0.33H2O/MWCNTs nanocomposite.
基金Project supported by the National Postdoctoral Science Foundation of China (No.20060400317)the Education Foundation of Zhejiang Province (No.20061459)the Young Foundation of Zhejiang Province (No.0202303005),China
文摘An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and com-pression was presented. For geomaterials,two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models,general solutions cal-culating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening prop-erties. If classical elastic theory is adopted and strain-softening properties are neglected,rather large errors may be the result.
基金Project(51675431)supported by the National Natural Science Foundation of China
文摘Uniaxial strain hardening exponent is not suitable for describing the strain hardening behaviors of the anisotropic materials, especially when material deforms in the multi-axial stress states. In this work, a novel method was proposed to estimate the equivalent strain hardening exponent of anisotropic materials based on an equivalent energy method. By performing extensive finite element (FE) simulations of the spherical indentation on anisotropic materials, dimensionless function was proposed to correlate the strain hardening exponent of anisotropic materials with the indentation imprint parameters. And then, a mathematic expression on the strain hardening exponent of anisotropic materials with the indentation imprint was established to estimate the equivalent strain hardening exponent of anisotropic materials by directly solving this dimensionless function. Additionally, Meyer equation was modified to determine the yield stress of anisotropic materials. The effectiveness and reliability of the new method were verified by the numerical examples and by its application on the TC1M engineering material.
基金Project supported by the National Natural Science Foundation of China(Nos.11725207,12021002,and 12072226)。
文摘This paper studies the contact vibration problem of an elastic half-space coated with functionally graded materials(FGMs)subject to a rigid spherical punch.A static force superimposing a dynamic time-harmonic force acts on the rigid spherical punch.Firstly,we give the static contact problem of FGMs by a least-square fitting approach.Next,the dynamic contact pressure is solved by employing the perturbation method.Lastly,the dynamic contact stiffness with different dynamic contact displacement conditions is derived for the FGM coated half-space.The effects of the gradient index,coating thickness,internal friction,and punch radius on the dynamic contact stiffness factor are discussed in detail.
基金Foundation of Harbin Institute of Technology,China(No.HIT.2001.10)Harbin Municipal Youth Foundation of China(No.2002AFQXJ040).
文摘The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters on the material removal rate when the spherical optical glasses are polished with different curvature radius, such as the decrement of the bonnet, the rotational speed of the bonnet and the curvature radius of the work-piece's surface using a bonnet trial-manufacturing machine developed by our assignment groups. In the end, the curvilinear relationships between these parameters and the material removal rate are acquired and the laws of the effects on material removal rate in bonnet polishing by several parameters are given. When the spherical-pieces are polished with smaller curvature radius, it is not proportional to either bonnet decrement or bonnet rotational speed as described by the Preston equation although the removal rate increases as the relative velocity or the applied pressure increases. Therefore, for the purpose of calculating more accurately the material removal of the spherical work-pieces, the Preston equation should be modified and studied further.
文摘The effect Of Y2O3 as additive to the positive electrode on the high-temperature performances of the Ni-MH batteries was studied. The specific capacities of the positive electrode in Ni-MH battery at higher temperatures are much lower than usual. In order to improve high-temperature performances, charge/discharge curves of the Ni(OH)(2) electrodes with different amounts Of Y2O3 it different temperatures were studied. It is found that the specific capacities of the spherical Ni (OH)(2) with Y2O3 as additive are much higher than those of the regular at higher temperatures. The specific capacity of Ni (OH)(2) containing 1% Y2O3 at 0.2C C/D rate is 35% higher than that of the regular. The specific capacity of Ni (OH)(2) containing 0.2% Y2O3 at 1C C/D rate is 15% higher than that of the regular. Mechanism Of Y2O3 improving high temperature performances of Ni(OH)(2) electrode was also discussed in detail.
基金Project(50375156) supported by the National Natural Science Foundation of China
文摘A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials.Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius(radius≤200 μm)spherical indenter,respectively.And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle.Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness.The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials,while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials.Moreover,the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness,respectively.The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4,respectively.
基金Project(51674114)supported by the National Natural Science Foundation of ChinaProject(2019JJ40069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(16K025)supported by the Key Laboratory of the Education Department of Hunan Province,China
文摘A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks(MOFs)method under a mild liquid-phase reaction condition,and was further employed as an anode material for lithium-ion batteries(LIBs).The effect of reaction temperature and time on morphologies of Sb2O3 was studied.The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area.When the tremella-like Sb2O3 was used as LIBs anode,the discharge and charge capacities can achieve 724 and 446 mA·h/g in the first cycle,respectively.Moreover,the electrode retains an impressive high capacity of 275 mA·h/g even after 50 cycles at 20 mA/g,indicating that the material is extremely promising for application in LIBs.
基金Funded by National Natural Science Fundation of China(No.51002126)Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(No.10zxfk30)
文摘Nickel tartrate precursor particles were synthesized by the liquid phase precipitation method in an ethanol-water-ammonia mixed solution, with tartaric acid and using nickel chlorate as raw materials, with the pH value controlled at 4.0, and the temperature controlled at 50 ℃. Nickel particles with complicated morphology were prepared by the decomposition of nickel taratrate precursor particles at temperatures of 360, 380 and 400 ℃, respectively. The study of infrared spectroscopy (IR) indicated that the product was pure nickel tartrate. The studies of the atomic absorption spectrometry (AAS) and organic elemental analysis (OEA) indicated that the molar ratio of Ni2+ to (C4H4O6)2- is close to 1:1. The studies of the differential scanning calorimeter and thermo-gravimetric analysis (DSC-TG) indicated that the chemical formula Niz(C4H4O6) 2.5H2O was confirmed. The studies of X-ray diffractions (XRD) indicated that the silvery white metal powders were pure Ni, with a face-centered cubic crystal structure. The images of scanning electron microscopy (SEM) showed that the morphology of metal Ni particles was obvious spherical and radiate. The diameter of nickel tartrate particles was about 60 μm, which consisted of many nanolathes; and the diameter of metal Ni particles was about 30 μm, which consisted of many lathes about 0.5 μm in thickness.
文摘Spherical-symmetric steady-state response problem of piezoelectric spherical shell in the absence of body force and free charges is discussed. The steady-state response solutions of mechanical displacement, stresses, strains, potential and electric displacement were derived Sram constitutive relations, geometric and motion equations for the piezoelectric medium under external excitation (i.e. applied surface traction and potential) in spherical coordinate system. As an application of the? general solutions, the problem of an elastic spherical shell with piezoelectric actuator and sensor layers was solved. The results could provide good theoretical basis for the spherical-symmetric dynamic control problem of piezoelectric intelligent structure. Furthermore, the solutions can serve as reference for the research of general dynamic control problem.
基金Financial assistance from ARMREB(DRDO) under grant No.ARMREB/CDSW/2012/149
文摘Morphology controlled synthesis of nanoparticles of powerful high energetic compounds(HECs) such as l,3,5-trinitro-l,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-l,3,5,7-tetrazocane(HMX) were achieved by a simple solvent—antisolvent interaction(SAI) method at 70 ℃.The effects of different solvents on particle size and morphology of the prepared nano-HECs were studied systematically.Particle size and morphology of the nano-HECs was characterized using field emission scanning electron microscopy(FE-SEM) imaging.X-ray diffraction(XRD) and Fourier transform infrared(FTIR) spectroscopy studies revealed that RDX and HMX were precipitated in their most stable polymorphic forms,i.e.a and P,respectively.Thermogravimetric analysis coupled with differential scanning calorimetry(TGA-DSC) studies showed that the thermal response of the nanoparticles was similar to the respective raw-HECs.HEC nanoparticles with spherical and rod shaped morphology were observed under different solvent conditions.The mean particle size also varied considerably with the use of different solvents.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA09Z109)the Natural Science Foundation of Fujian Province,China (Grant No. T0750014)
文摘A spherical cap radiator is one of the important parts of an underwater wide-beam imaging system. The back radiation of a traditional spherical cap radiator, which is composed of a vibrating cap and a rigid baffle, is strong and its far-field directivity function may fluctuate in big amplitude in the vicinity of the polar axis. These shortcomings complicate the processing of the reflective waves received for imaging the targets. In this study, the back radiation is weakened by adding an acoustic soft material belt between the vibrating cap and the rigid baffle. And the fluctuation mentioned above is lowered remarkably by dividing the spherical cap radiator into many annuluses and a relatively smaller spherical cap, and by controlling the phase retardations of all elements appropriately. Furthermore, the numerical experiments are carried out by the finite element method (FEM) to prove the validity of the above methods.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
基金the National Natural Science Foundatio nof China(Grant Nos.11372035,11632003,11472044,11802017)the Postdoctoral Innovation Talent Support Program(No.BX20180040).
文摘The acoustic scattering is theoretically studied in this paper for three-dimensional spherical cloak composed of unideal pentamode material,for which small shear rigidity is always inevitable for a real designed microstructure.A theoretical formulation is developed to efficiently evaluate the cloaking performance.The generic scattering feature of the cloak and the efTects of material imperfectness and inner cloak boundary constraints are systematically examined.The preferable constraint type and the critical imperfectness parameter of the material are identified for possible broadband invisibility.In addition,a very practical lining shell scheme is proposed to tune the constraint strength on the inner boundary.By combining the theoretical model with optimization algorithm,it is further proved that the cloak can be reduced by several piecewiseuniform layers and optimized to achieve excellent invisibility in targeted frequency bands.The study will provide valuable guidance for the future microstructural design of cloaks.
文摘At great depth ratio, two methodologies based on the representative strain were improved to extract mechanical properties of metallic engineering structural materials from P-h curve of an indentation response. The improved aspects include: the com- bination of great ratio h1/R=0.1 and h2/R=0.4 replaced h1/R=0.01 and h2/R=0.06 (Cao's method) and h1/R=0.1 and h2/R=0.3 (Ogasawara's method); three types of metallic engineering structural materials with obviously different elastic modulus were dealt with to get their calculation parameters, respectively; a new parameter reflecting the effect of work-hardening exponent n was introduced to get the dimensionless function which is independent of n and a relationship between W/(h3σrS) and E^*/(σrS) at great depth ratio. By using the results of finite element simulation, the efficiency and accuracy of the improved method have been proved, and it showed that the accuracv of the improved method is much better than the former method.