期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of thermal field induced by concave spherical transducer in multi-layer media 被引量:5
1
作者 丁亚军 钱盛友 廖志远 《Journal of Central South University》 SCIE EI CAS 2013年第11期3166-3170,共5页
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe... High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range. 展开更多
关键词 multi-layer media concave spherical transducer high intensity focused ultrasound thermal field
下载PDF
Influence of the prestressed layer on spherical transducer in sound radiation performance 被引量:1
2
作者 Xiaofang Zhang Xiujuan Lin +6 位作者 Rui Guo Changhong Yang Hui Zhao Mingyu Zhang Yan Wang Xin Cheng Shifeng Huang 《Journal of Advanced Dielectrics》 2022年第6期32-39,共8页
To improve the acoustic radiation performance of the spherical transducer,a prestressed layer is formed in the transducer through fiber winding.The influence of the prestressed layer on the transducer is studied from ... To improve the acoustic radiation performance of the spherical transducer,a prestressed layer is formed in the transducer through fiber winding.The influence of the prestressed layer on the transducer is studied from the effects of the radial prestress(Tr)and acoustic impedance,respectively.First,a theoretical estimation of Tr is established with a thin shell approximation of the prestressed layer.Then,the acoustic impedance is measured to evaluate the efficiency of sound energy transmission within the prestressed layer.Further,the ideal effects of Tr on the sound radiation performances of the transducer are analyzed through finite element analysis(FEA).Finally,four spherical transducers are fabricated and tested to investigate their dependence of actual properties on the prestressed layer.The results show that with the growth of Tr,the acoustic impedance of the prestressed layer grows,mitigating the enormous impedance mismatch between the piezoelectric ceramic and water,while increasing attenuation of the acoustic energy,resulting in a peak value of the maximum transmitting voltage response(TVRmax)at 1.18 MPa.The maximum drive voltage increases with Tr,leading to a steady growth of the maximum transmitting sound level(SLmax),with a noticeable ascend of 3.9 dB at a 3.44 MPa Tr.This is a strong credibility that the prestressed layer could improve the sound radiation perfor­mance of the spherical transducer. 展开更多
关键词 Radial prestress acoustic impedance spherical transducers transmission voltage response transmission sound level
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部