Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic th...Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic therapeutics,and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy.Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics.Sphingosine-1-phosphate(S1P)receptor(S1PR)modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement.S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival,differentiation,migration,proliferation,immune response,and lymphocyte trafficking.T lymphocytes play an important role in regulating inflammatory responses.In inflamed IBD tissue,an imbalance between T helper(Th)and regulatory T lymphocytes and Th cytokine levels was found.The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD.S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking,lymphocyte number,lymphocyte activity,cytokine production,and contributing to gut barrier function.展开更多
Controlled release of the functional factors is the key to improve clinical therapeutic efficacy during the tissue repair and regeneration. The thrce-dimensional (3D) scaffold can provide not only physical propertie...Controlled release of the functional factors is the key to improve clinical therapeutic efficacy during the tissue repair and regeneration. The thrce-dimensional (3D) scaffold can provide not only physical properties such as high strength and porosity hut also an optimal environment to enhance tissue regeneration. Sphingosine 1-phosphate (SIP), an angiogenlc factor, was loaded into mesoporous silica nanoparticles (MSNs) and then incorporated into poly ( L-lactic add ) ( PLLA ) nanofibrons scaffold, which was fabricated by thermally induced phase separation (TIPS) method. The prepared scaffolds were examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy ( SEM), and transmission electron microscopy (TEM) and compressive mechanical test. The ATR-FTIR result demonstrated the existence of MSNs in the PLLA nanofibrous scaffold. The SEM images showed that PLLA scaffold had regular pore channel, interconnected pores and nanofibrous structure. The addition of MSNs at appropriate content had no visible effect on the structure of scaffold. The compressive modulus of scaffold containing MSNs was higher than that of the scaffold without MSNs. Furthermore, fluorescein isothiocyanate (FTTC) was used as model molecule to investigate the release behavior of SIP from MSNs- incorporated PLLA (MSNs/PLLA) nanofibrons scaffold. The result showed that the composite scaffold largely reduced the initial burst release and exhibited prolonged release of FITC than MSNs. Thus, these results indicated that SIP-loaded composite uanofibrons scaffold has potential applications for bone tissue engneering.展开更多
AIM:To investigate the sphingosine 1phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells. METHODS: S1P re...AIM:To investigate the sphingosine 1phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells. METHODS: S1P receptor expression profile in human esophageal squamous cell carcinoma cell line Eca109 was detected by semiquantitative reverse trans cription polymerase chain reaction. Eca109 cells were stably transfected with S1P5EGFP or controlEGFP constructs. The relation between the responses of cell proliferationand migration to S1P and S1P5 expres sion was evaluated by 3(4,5dimethylthiazol2yl)2,5diphenyl tetrazolium bromide and migration assay, respectively. RESULTS: Both normal human esophageal mucosal epithelium and Eca109 cells expressed S1P1, S1P2, S1P3 and S1P5, respectively. Esophageal mucosal epithelium expressed S1P5 at a higher level than Eca109 cell line. S1P5 overexpressing Eca109 cells displayed spindle cell morphology with elongated and extended filopodialike projections. The proliferation response of S1P5transfected Eca109 cells was lower than that of control vectortransfected cells with or without S1P stimulation (P < 0.05 or 0.01). S1P significantly inhibited the migration of S1P5transfected Eca109 cells (P < 0.001). However, without S1P in transwell lower chamber, the number of migrated S1P5transfected Eca109 cells was greater than that of control vectortransfected Eca109 cells (P < 0.001).CONCLUSION: S1P binding to S1P5 inhibits the proliferation and migration of S1P5transfected Eca109 cells. Esophageal cancer cells may downregulate the expression of S1P5 to escape the inhibitory effect.展开更多
Background:The lysosphingolipid,sphingosine-1-phosphate,is a well-described and potent pro-angiogenic factor.Receptors,as well as the sphingosine phosphorylating enzyme sphingosine kinase 1,are expressed in the placen...Background:The lysosphingolipid,sphingosine-1-phosphate,is a well-described and potent pro-angiogenic factor.Receptors,as well as the sphingosine phosphorylating enzyme sphingosine kinase 1,are expressed in the placentomes of sheep and the decidua of rodents;however,a function for this signaling pathway during pregnancy has not been established.The objective of this study was to investigate whether sphingosine-1-phosphate promoted angiogenesis within the placentomes of pregnant ewes.Ewes were given daily jugular injections of FTY720(2-amino-2[2-(−4-octylphenyl)ethyl]propate-1,3-diol hydrochloride),an S1P analog.Results:FTY720 infusion from days 30 to 60 of pregnancy did not alter maternal organ weights nor total number or mass of placentomes,but did alter placentome histoarchitecture.Interdigitation of caruncular crypts and cotyledonary villi was decreased,as was the relative area of cotyledonary tissue within placentomes.Also,the percentage of area occupied by cotyledonary villi per unit of placentome was increased,while the thickness of the caruncular capsule was decreased in ewes treated with FTY720.Further,FTY720 infusion decreased the number and density of blood vessels within caruncular tissue near the placentome capsule where the crypts emerge from the capsule.Finally,FTY720 infusion decreased asparagine and glutamine in amniotic fluid and methionine in allantoic fluid,and decreased the crown rump length of day 60 fetuses.Conclusions:While members of the sphingosine-1-phosphate signaling pathway have been characterized within the uteri and placentae of sheep and mice,the present study uses FTY720 to address the influence of S1P signaling on placental development.We present evidence that modulation of the S1P signaling pathway results in the alteration of caruncular vasculature,placentome architecture,abundance of amino acids in allantoic and amniotic fluids,and fetal growth during pregnancy in sheep.The marked morphological changes in placentome histoarchitecture,including alteration in the vasculature,may be relevant to fetal growth and survival.It is somewhat surprising that fetal length was reduced as early as day 60,because fetal growth in sheep is greatest after day 60.The subtle changes observed in the fetuses of ewes exposed to FTY720 may indicate an adaptive response of the fetuses to cope with altered placental morphology.展开更多
文摘Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic therapeutics,and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy.Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics.Sphingosine-1-phosphate(S1P)receptor(S1PR)modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement.S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival,differentiation,migration,proliferation,immune response,and lymphocyte trafficking.T lymphocytes play an important role in regulating inflammatory responses.In inflamed IBD tissue,an imbalance between T helper(Th)and regulatory T lymphocytes and Th cytokine levels was found.The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD.S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking,lymphocyte number,lymphocyte activity,cytokine production,and contributing to gut barrier function.
基金National Natural Science Foundations of China(Nos.31271028,31570984)International Cooperation Fund of the Science and Technology Commission of Shanghai Municipality,China(No.15540723400)+2 种基金Open Foundation of State Key Laboratory for Modification of Chemical Fibers,Polymer Materials,China(No.LK1416)the Innovation Funds of Donghua University,China(No.15D310516)“111 Project” Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Controlled release of the functional factors is the key to improve clinical therapeutic efficacy during the tissue repair and regeneration. The thrce-dimensional (3D) scaffold can provide not only physical properties such as high strength and porosity hut also an optimal environment to enhance tissue regeneration. Sphingosine 1-phosphate (SIP), an angiogenlc factor, was loaded into mesoporous silica nanoparticles (MSNs) and then incorporated into poly ( L-lactic add ) ( PLLA ) nanofibrons scaffold, which was fabricated by thermally induced phase separation (TIPS) method. The prepared scaffolds were examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy ( SEM), and transmission electron microscopy (TEM) and compressive mechanical test. The ATR-FTIR result demonstrated the existence of MSNs in the PLLA nanofibrous scaffold. The SEM images showed that PLLA scaffold had regular pore channel, interconnected pores and nanofibrous structure. The addition of MSNs at appropriate content had no visible effect on the structure of scaffold. The compressive modulus of scaffold containing MSNs was higher than that of the scaffold without MSNs. Furthermore, fluorescein isothiocyanate (FTTC) was used as model molecule to investigate the release behavior of SIP from MSNs- incorporated PLLA (MSNs/PLLA) nanofibrons scaffold. The result showed that the composite scaffold largely reduced the initial burst release and exhibited prolonged release of FITC than MSNs. Thus, these results indicated that SIP-loaded composite uanofibrons scaffold has potential applications for bone tissue engneering.
基金Supported by The Key Project of Ministry of Education, No. 209105Sichuan Youth Science and Technology Foundation, No. 08ZQ026-081Key Laboratory Foundation of North Sichuan Medical College, No. KFJJ (08)-03
文摘AIM:To investigate the sphingosine 1phosphate (S1P) receptor expression profile in human esophageal cancer cells and the effects of S1P5 on proliferation and migration of human esophageal cancer cells. METHODS: S1P receptor expression profile in human esophageal squamous cell carcinoma cell line Eca109 was detected by semiquantitative reverse trans cription polymerase chain reaction. Eca109 cells were stably transfected with S1P5EGFP or controlEGFP constructs. The relation between the responses of cell proliferationand migration to S1P and S1P5 expres sion was evaluated by 3(4,5dimethylthiazol2yl)2,5diphenyl tetrazolium bromide and migration assay, respectively. RESULTS: Both normal human esophageal mucosal epithelium and Eca109 cells expressed S1P1, S1P2, S1P3 and S1P5, respectively. Esophageal mucosal epithelium expressed S1P5 at a higher level than Eca109 cell line. S1P5 overexpressing Eca109 cells displayed spindle cell morphology with elongated and extended filopodialike projections. The proliferation response of S1P5transfected Eca109 cells was lower than that of control vectortransfected cells with or without S1P stimulation (P < 0.05 or 0.01). S1P significantly inhibited the migration of S1P5transfected Eca109 cells (P < 0.001). However, without S1P in transwell lower chamber, the number of migrated S1P5transfected Eca109 cells was greater than that of control vectortransfected Eca109 cells (P < 0.001).CONCLUSION: S1P binding to S1P5 inhibits the proliferation and migration of S1P5transfected Eca109 cells. Esophageal cancer cells may downregulate the expression of S1P5 to escape the inhibitory effect.
基金National Research Initiative Competitive Grant No.2009-35203-05725(KJB and GAJ)Fellowship No.2008-35203-18830(KAD)from the USDA National Institute of Food and Agriculture.
文摘Background:The lysosphingolipid,sphingosine-1-phosphate,is a well-described and potent pro-angiogenic factor.Receptors,as well as the sphingosine phosphorylating enzyme sphingosine kinase 1,are expressed in the placentomes of sheep and the decidua of rodents;however,a function for this signaling pathway during pregnancy has not been established.The objective of this study was to investigate whether sphingosine-1-phosphate promoted angiogenesis within the placentomes of pregnant ewes.Ewes were given daily jugular injections of FTY720(2-amino-2[2-(−4-octylphenyl)ethyl]propate-1,3-diol hydrochloride),an S1P analog.Results:FTY720 infusion from days 30 to 60 of pregnancy did not alter maternal organ weights nor total number or mass of placentomes,but did alter placentome histoarchitecture.Interdigitation of caruncular crypts and cotyledonary villi was decreased,as was the relative area of cotyledonary tissue within placentomes.Also,the percentage of area occupied by cotyledonary villi per unit of placentome was increased,while the thickness of the caruncular capsule was decreased in ewes treated with FTY720.Further,FTY720 infusion decreased the number and density of blood vessels within caruncular tissue near the placentome capsule where the crypts emerge from the capsule.Finally,FTY720 infusion decreased asparagine and glutamine in amniotic fluid and methionine in allantoic fluid,and decreased the crown rump length of day 60 fetuses.Conclusions:While members of the sphingosine-1-phosphate signaling pathway have been characterized within the uteri and placentae of sheep and mice,the present study uses FTY720 to address the influence of S1P signaling on placental development.We present evidence that modulation of the S1P signaling pathway results in the alteration of caruncular vasculature,placentome architecture,abundance of amino acids in allantoic and amniotic fluids,and fetal growth during pregnancy in sheep.The marked morphological changes in placentome histoarchitecture,including alteration in the vasculature,may be relevant to fetal growth and survival.It is somewhat surprising that fetal length was reduced as early as day 60,because fetal growth in sheep is greatest after day 60.The subtle changes observed in the fetuses of ewes exposed to FTY720 may indicate an adaptive response of the fetuses to cope with altered placental morphology.