Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic th...Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic therapeutics,and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy.Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics.Sphingosine-1-phosphate(S1P)receptor(S1PR)modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement.S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival,differentiation,migration,proliferation,immune response,and lymphocyte trafficking.T lymphocytes play an important role in regulating inflammatory responses.In inflamed IBD tissue,an imbalance between T helper(Th)and regulatory T lymphocytes and Th cytokine levels was found.The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD.S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking,lymphocyte number,lymphocyte activity,cytokine production,and contributing to gut barrier function.展开更多
Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and sur...Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.展开更多
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive n...Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.展开更多
Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac p...Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac protection.Our previous work found that sphingosine-1-phosphate(S1P)could ameliorate cardiac hypertrophy.In this study,we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling.Methods:Eight-week-old male C57BL/6 mice were randomly divided into a sham,transverse aortic constriction(TAC)or a TAC+S1P treatment group.Results:We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease inα-smooth muscle actin(α-SMA)and collagen type I(COL I)expression compared with the TAC group.We also found that one of the key S1P enzymes,sphingosine kinase 2(SphK2),which was mainly distributed in cytoblasts,was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro.In addition,our in vitro results showed that S1P treatment activated extracellular regulated protein kinases(ERK)phosphorylation mainly through the S1P receptor 2(S1PR2)and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine.Conclusion:These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart.This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.展开更多
Aryl hydrocarbon receptor(AhR),a cellular chemical sensor,controls cellular homeostasis,and sphingosine-1-phosphate(S1P),a bioactive intermediate of sphingolipid metabolism,is believed to have a role in immunity and i...Aryl hydrocarbon receptor(AhR),a cellular chemical sensor,controls cellular homeostasis,and sphingosine-1-phosphate(S1P),a bioactive intermediate of sphingolipid metabolism,is believed to have a role in immunity and inflammation,but their potential crosstalk is currently unknown.We aimed to determine whether there is a functional linkage between AhR signaling and sphingolipid metabolism.We showed that AhR ligands,including an environmental polycyclic aromatic hydrocarbon(PAH),induced S1P generation,and inhibited S1P lyase(S1PL)activity in resting cells,antigen/IgE-activated mast cells,and mouse lungs exposed to the AhR ligand alone or in combination with antigen challenge.The reduction of S1PL activity was due to AhR-mediated oxidation of S1PL at residue 317,which was reversible by the addition of an antioxidant or in cells with knockdown of the ORMDL3 gene encoding an ER transmembrane protein,whereas C317A S1PL mutant-transfected cells were resistant to the AhR-mediated effect.Furthermore,analysis of AhR ligand-treated cells showed a time-dependent increase of the ORMDL3–S1PL complex,which was confirmed by FRET analysis.This change increased the S1P levels,which in turn,induced mast cell degranulation via S1PR2 signaling.In addition,elevated levels of plasma S1P were found in children with asthma compared to non-asthmatic subjects.These results suggest a new regulatory pathway whereby the AhR–ligand axis induces ORMDL3-dependent S1P generation by inhibiting S1PL,which may contribute to the expression of allergic diseases.展开更多
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest t...Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.展开更多
The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing publ...The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing public health concern worldwide,and novel therapeutics that target both the liver and the GI tract(gut-liver axis)are much needed.In addition to aiding fat digestion,bile acids act as important signaling molecules that regulate lipid,glucose and energy metabolism via activating nuclear receptor,G protein-coupled receptors(GPCRs),Takeda G protein receptor 5(TGR5)and sphingosine-1-phosphate receptor 2(S1PR2).Sphingosine-1-phosphate(S1P)is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver,in-flammatory bowel disease(IBD)and colorectal cancer.In this review,we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.展开更多
BACKGROUND Remarkable progress over the last decade has equipped clinicians with many options in the treatment of inflammatory bowel disease.Clinicians now have the unique opportunity to provide individualized treatme...BACKGROUND Remarkable progress over the last decade has equipped clinicians with many options in the treatment of inflammatory bowel disease.Clinicians now have the unique opportunity to provide individualized treatment that can achieve and sustain remission in many patients.However,issues of primary non-response(PNR)and secondary loss of response(SLOR)to non-tumour necrosis factor inhibitor(TNFi)therapies remains a common problem.Specific issues include the choice of optimization of therapy,identifying when dose optimization will recapture response,establishing optimal dose for escalation and when to switch therapy.AIM To explores the issues of PNR and SLOR to non-TNFi therapies.METHODS This review explores the current evidence and literature to elucidate management options in cases of PNR/SLOR.It will also explore potential predictors for response following SLOR/PNR to therapies including the role of therapeutic drug monitoring(TDM).RESULTS In the setting of PNR and loss of response to alpha-beta7-integrin inhibitors and interleukin(IL)-12 and IL-23 inhibitors dose optimization is a reasonable option to capture response.For Janus kinase inhibitors dose optimization can be utilized to recapture response with loss of response.CONCLUSION The role of TDM in the setting of advanced non-TNFi therapies to identify patients who require dose optimization and as a predictor for clinical remission is not yet established and this remains an area that should be addressed in the future.展开更多
A rapid and sensitive liquid chromatography–tandem mass spectrometry(LC–MS/MS) method was developed and validated for the simultaneous determination of H002 and its phosphorylated metabolite, H002-P and hydroxylated...A rapid and sensitive liquid chromatography–tandem mass spectrometry(LC–MS/MS) method was developed and validated for the simultaneous determination of H002 and its phosphorylated metabolite, H002-P and hydroxylated metabolite H002-M, in rat blood. H001, an analogue of H002, was used as the internal standard.Blood samples were prepared by simple protein precipitation. The analytes and internal standard were separated on a Zorbax SB-C18 column with a gradient mobile phase consisting of methanol and water containing 0.1% formic acid at a flow rate of 0.2 mL /min with an operating temperature of 20 1C. The detection was performed on a triple quadrupole tandem mass spectrometer with positive electrospray ionization in multiple-reaction monitoring mode.Linear detection responses were obtained from 0.2–100 ng/mL for H002 and H002-M, while 0.5–100 ng/mL for H002-P. The intra- and inter-day precision(RSD%) was within 11.76%, with the accuracy(RE%) ranging from –9.84% to 9.12%. The analytes were shown to be stable during sample storage, preparation and analytic procedures.The method was applied to determine the pharmacokinetics of H002 in rats, and a preliminary study showed that the pharmacokinetics of H002 correlated with its biological effect on peripheral blood lymphocytes.展开更多
Recent research on the underlying mechanisms of cerebral ischemia indicates that the neurovascular unit can be used as a novel subject for general surveys of neuronal damage and protein mechanisms.Fingolimod(FTY-720)i...Recent research on the underlying mechanisms of cerebral ischemia indicates that the neurovascular unit can be used as a novel subject for general surveys of neuronal damage and protein mechanisms.Fingolimod(FTY-720)is a newly developed immunosuppressant isolated from Cordyceps sinensis that exhibits a wide range of biological activities,and has recently attracted much attention for the treatment of ischemic cerebrovascular diseases.In the current research,the role of FTY-720 and its possible mechanisms were assessed from an neurovascular unit perspective using a rat cerebral ischemia model.Our results revealed that FTY-720 markedly decreased infarct volume,promoted neurological function recovery,and weakened the blood-brain barrier permeability of ischemic rats.The protective roles of FTY-720 in ischemic stroke are ascribed to a combination of sphingosin-1-phosphate receptor-1 and reduced expression of sphingosin-1-phosphate receptor-1 in microvessels and reduction of interleukin-17A protein levels.These findings indicate that FTY-720 has promise as a new therapy for neurovascular protection and functional recovery after ischemic stroke.展开更多
Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease with unclear etiology and limited treatment options.The median survival time for IPF patients is approximately 2–3 years and there is no effective inter...Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease with unclear etiology and limited treatment options.The median survival time for IPF patients is approximately 2–3 years and there is no effective intervention to treat IPF other than lung transplantation.As important components of lung tissue,endothelial cells(ECs)are associated with pulmonary diseases.However,the role of endothelial dysfunction in pulmonary fibrosis(PF)is incompletely understood.Sphingosine-1-phosphate receptor 1(S1PR1)is a G protein-coupled receptor highly expressed in lung ECs.Its expression is markedly reduced in patients with IPF.Herein,we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin(BLM)challenge.Selective activation of S1PR1 with an S1PR1 agonist,IMMH002,exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier.These results suggest that S1PR1 might be a promising drug target for IPF therapy.展开更多
Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Take...Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Takeda G protein receptor 5(TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cholinergic receptor muscarinic 2(CHRM2).All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure.Because epigenetic regulation is critical for organisms to adapt to constant environmental changes,this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid re-ceptors.In addition,the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs.Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.展开更多
Bile acids(BA)are synthesized from cholesterol in the liver.They are essential for promotion of the absorption of lipids,cholesterol,and lipid-soluble vitamins from the intestines.BAs are hormones that regulate nutrie...Bile acids(BA)are synthesized from cholesterol in the liver.They are essential for promotion of the absorption of lipids,cholesterol,and lipid-soluble vitamins from the intestines.BAs are hormones that regulate nutrient metabolism by activating nuclear receptors(farnesoid X receptor(FXR),pregnane X receptor,vitamin D)and G protein-coupled receptors(e.g.,TGR5,sphingosine-1-phosphate receptor 2(S1PR2))in the liver and intestines.In the liver,S1PR2 activation by conjugated BAs activates the extracellular signal-regulated kinase 1/2 and AKT signaling pathways,and nuclear sphingosine kinase 2.The latter produces sphingosine-1-phosphate(S1P),an inhibitor of histone deacetylases 1/2,which allows for the differential up-regulation of expression of genes involved in the metabolism of sterols and lipids.We discuss here the emerging concepts of the interactions of BAs,FXR,insulin,S1P signaling and nutrient metabolism.展开更多
Over 20%of mortality during acute liver failure is associated with the development of hepatic encephalopathy(HE).Thus,HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities...Over 20%of mortality during acute liver failure is associated with the development of hepatic encephalopathy(HE).Thus,HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma.HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels.Thus,the brain is exposed to intestinal-derived toxic substances.Moreover,the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation.This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE.Together,the significance of the gut-liver-brain axis in human health warrants attention.This review paper focuses on the roles of bacteria metabolites,mainly ammonia and bile acids(BAs)as well as BA receptors in HE.The literature search conducted for this review included searches for phrases such as BA receptors,BAs,ammonia,farnesoid X receptor(FXR),G protein-coupled bile acid receptor 1(GPBAR1 or TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy.PubMed,as well as Google Scholar,was the search engines used to find relevant publications.展开更多
文摘Inflammatory bowel disease(IBD)is chronic inflammation of the gastrointestinal tract that has a high epidemiological prevalence worldwide.The increasing disease burden worldwide,lack of response to current biologic therapeutics,and treatment-related immunogenicity have led to major concerns regarding the clinical management of IBD patients and treatment efficacy.Understanding disease pathogenesis and disease-related molecular mechanisms is the most important goal in developing new and effective therapeutics.Sphingosine-1-phosphate(S1P)receptor(S1PR)modulators form a class of oral small molecule drugs currently in clinical development for IBD have shown promising effects on disease improvement.S1P is a sphingosine-derived phospholipid that acts by binding to its receptor S1PR and is involved in the regulation of several biological processes including cell survival,differentiation,migration,proliferation,immune response,and lymphocyte trafficking.T lymphocytes play an important role in regulating inflammatory responses.In inflamed IBD tissue,an imbalance between T helper(Th)and regulatory T lymphocytes and Th cytokine levels was found.The S1P/S1PR signaling axis and metabolism have been linked to inflammatory responses in IBD.S1P modulators targeting S1PRs and S1P metabolism have been developed and shown to regulate inflammatory responses by affecting lymphocyte trafficking,lymphocyte number,lymphocyte activity,cytokine production,and contributing to gut barrier function.
文摘Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.
基金Supported by Grants from the United States Public Health Service/National Institutes of Health, No. HL080404, HL094883 (Argraves KM) and HL061873, HL095067 (Argraves WS)NIH Training Grant to Improve Cardiovascular Therapies HL007260 (Wilkerson BA)American Heart Association 10PRE3910006 (Wilkerson BA)
文摘Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.
基金supported by the National Natural Science Foundation of China(No.81873505).
文摘Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac protection.Our previous work found that sphingosine-1-phosphate(S1P)could ameliorate cardiac hypertrophy.In this study,we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling.Methods:Eight-week-old male C57BL/6 mice were randomly divided into a sham,transverse aortic constriction(TAC)or a TAC+S1P treatment group.Results:We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease inα-smooth muscle actin(α-SMA)and collagen type I(COL I)expression compared with the TAC group.We also found that one of the key S1P enzymes,sphingosine kinase 2(SphK2),which was mainly distributed in cytoblasts,was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro.In addition,our in vitro results showed that S1P treatment activated extracellular regulated protein kinases(ERK)phosphorylation mainly through the S1P receptor 2(S1PR2)and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine.Conclusion:These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart.This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.
基金This work was supported,in part,by grants from the National Health Research Institutes,Taiwan(EOPP10-014 and EOSP07-014 to S.-K.H.)Kaohsiung Medical University“The Talent Plan”(105KMUOR04 to S.-K.H.)+6 种基金the Ministry of Science and Technology,Taiwan(MOST 105-2320-B-039-004 and MOST 106-2320-B-039-037,to H.-C.W.)China Medical University Hospital,Taiwan(DMR-106-154 and DMR-107-117,to H.-C.W.)the Community Medicine Research Center,Chang Gung Memorial Hospital at Keelung(CMRPG3E1183 to L.-C.C.)the 1000 Young Talents Plan Program,China(to Y.Z.)the Initial Funding for New PI,Fudan Children’s Hospital and Fudan University(to Y.Z.)the National Natural Science Foundation of China(81671561,to Y.Z.)the National Key Research and Development Program of China(2016YFC1305102,to Y.Z.)。
文摘Aryl hydrocarbon receptor(AhR),a cellular chemical sensor,controls cellular homeostasis,and sphingosine-1-phosphate(S1P),a bioactive intermediate of sphingolipid metabolism,is believed to have a role in immunity and inflammation,but their potential crosstalk is currently unknown.We aimed to determine whether there is a functional linkage between AhR signaling and sphingolipid metabolism.We showed that AhR ligands,including an environmental polycyclic aromatic hydrocarbon(PAH),induced S1P generation,and inhibited S1P lyase(S1PL)activity in resting cells,antigen/IgE-activated mast cells,and mouse lungs exposed to the AhR ligand alone or in combination with antigen challenge.The reduction of S1PL activity was due to AhR-mediated oxidation of S1PL at residue 317,which was reversible by the addition of an antioxidant or in cells with knockdown of the ORMDL3 gene encoding an ER transmembrane protein,whereas C317A S1PL mutant-transfected cells were resistant to the AhR-mediated effect.Furthermore,analysis of AhR ligand-treated cells showed a time-dependent increase of the ORMDL3–S1PL complex,which was confirmed by FRET analysis.This change increased the S1P levels,which in turn,induced mast cell degranulation via S1PR2 signaling.In addition,elevated levels of plasma S1P were found in children with asthma compared to non-asthmatic subjects.These results suggest a new regulatory pathway whereby the AhR–ligand axis induces ORMDL3-dependent S1P generation by inhibiting S1PL,which may contribute to the expression of allergic diseases.
文摘Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
基金This work was supported by the USA National Institutes of Health(NIH)grants R01 DK104893 and R01DK-057543VA Merit Award I01BX004033 and 1I01BX001390Research Career Scientist Award(IK6BX004477)from the Department of Veterans Affairs.
文摘The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing public health concern worldwide,and novel therapeutics that target both the liver and the GI tract(gut-liver axis)are much needed.In addition to aiding fat digestion,bile acids act as important signaling molecules that regulate lipid,glucose and energy metabolism via activating nuclear receptor,G protein-coupled receptors(GPCRs),Takeda G protein receptor 5(TGR5)and sphingosine-1-phosphate receptor 2(S1PR2).Sphingosine-1-phosphate(S1P)is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver,in-flammatory bowel disease(IBD)and colorectal cancer.In this review,we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.
文摘BACKGROUND Remarkable progress over the last decade has equipped clinicians with many options in the treatment of inflammatory bowel disease.Clinicians now have the unique opportunity to provide individualized treatment that can achieve and sustain remission in many patients.However,issues of primary non-response(PNR)and secondary loss of response(SLOR)to non-tumour necrosis factor inhibitor(TNFi)therapies remains a common problem.Specific issues include the choice of optimization of therapy,identifying when dose optimization will recapture response,establishing optimal dose for escalation and when to switch therapy.AIM To explores the issues of PNR and SLOR to non-TNFi therapies.METHODS This review explores the current evidence and literature to elucidate management options in cases of PNR/SLOR.It will also explore potential predictors for response following SLOR/PNR to therapies including the role of therapeutic drug monitoring(TDM).RESULTS In the setting of PNR and loss of response to alpha-beta7-integrin inhibitors and interleukin(IL)-12 and IL-23 inhibitors dose optimization is a reasonable option to capture response.For Janus kinase inhibitors dose optimization can be utilized to recapture response with loss of response.CONCLUSION The role of TDM in the setting of advanced non-TNFi therapies to identify patients who require dose optimization and as a predictor for clinical remission is not yet established and this remains an area that should be addressed in the future.
基金supported by the National Science and Technology Major Project of China(Nos.2012ZX09301002-001-007 and2012ZX09301002-006)National Natural Science Foundation of China(NSFC,Nos.81202545,81302847 and 81473096)
文摘A rapid and sensitive liquid chromatography–tandem mass spectrometry(LC–MS/MS) method was developed and validated for the simultaneous determination of H002 and its phosphorylated metabolite, H002-P and hydroxylated metabolite H002-M, in rat blood. H001, an analogue of H002, was used as the internal standard.Blood samples were prepared by simple protein precipitation. The analytes and internal standard were separated on a Zorbax SB-C18 column with a gradient mobile phase consisting of methanol and water containing 0.1% formic acid at a flow rate of 0.2 mL /min with an operating temperature of 20 1C. The detection was performed on a triple quadrupole tandem mass spectrometer with positive electrospray ionization in multiple-reaction monitoring mode.Linear detection responses were obtained from 0.2–100 ng/mL for H002 and H002-M, while 0.5–100 ng/mL for H002-P. The intra- and inter-day precision(RSD%) was within 11.76%, with the accuracy(RE%) ranging from –9.84% to 9.12%. The analytes were shown to be stable during sample storage, preparation and analytic procedures.The method was applied to determine the pharmacokinetics of H002 in rats, and a preliminary study showed that the pharmacokinetics of H002 correlated with its biological effect on peripheral blood lymphocytes.
基金supported by grants from the National Natural Science Foundation of China,No.81971231(to JL)Liaoning Revitalization Talents Program,No.XLYC1907178(to JL)。
文摘Recent research on the underlying mechanisms of cerebral ischemia indicates that the neurovascular unit can be used as a novel subject for general surveys of neuronal damage and protein mechanisms.Fingolimod(FTY-720)is a newly developed immunosuppressant isolated from Cordyceps sinensis that exhibits a wide range of biological activities,and has recently attracted much attention for the treatment of ischemic cerebrovascular diseases.In the current research,the role of FTY-720 and its possible mechanisms were assessed from an neurovascular unit perspective using a rat cerebral ischemia model.Our results revealed that FTY-720 markedly decreased infarct volume,promoted neurological function recovery,and weakened the blood-brain barrier permeability of ischemic rats.The protective roles of FTY-720 in ischemic stroke are ascribed to a combination of sphingosin-1-phosphate receptor-1 and reduced expression of sphingosin-1-phosphate receptor-1 in microvessels and reduction of interleukin-17A protein levels.These findings indicate that FTY-720 has promise as a new therapy for neurovascular protection and functional recovery after ischemic stroke.
基金supported by National Key Research&Development Program from the Ministry of Science and Technology of the PRC(No.2019YFE0111800,China)National Natural Science Foundation of China(No.81872923,China)+1 种基金Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(No.2021-JKCS-016,China)The Science and Technology Development Fund,Macao SAR(No.0074/2019/AMJ,China).
文摘Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease with unclear etiology and limited treatment options.The median survival time for IPF patients is approximately 2–3 years and there is no effective intervention to treat IPF other than lung transplantation.As important components of lung tissue,endothelial cells(ECs)are associated with pulmonary diseases.However,the role of endothelial dysfunction in pulmonary fibrosis(PF)is incompletely understood.Sphingosine-1-phosphate receptor 1(S1PR1)is a G protein-coupled receptor highly expressed in lung ECs.Its expression is markedly reduced in patients with IPF.Herein,we generated an endothelial-conditional S1pr1 knockout mouse model which exhibited inflammation and fibrosis with or without bleomycin(BLM)challenge.Selective activation of S1PR1 with an S1PR1 agonist,IMMH002,exerted a potent therapeutic effect in mice with bleomycin-induced fibrosis by protecting the integrity of the endothelial barrier.These results suggest that S1PR1 might be a promising drug target for IPF therapy.
基金This study was supported by grants funded by the USA National Institutes of Health(NIH)U01CA179582 and R01 CA222490.
文摘Many receptors can be activated by bile acids(BAs)and their derivatives.These include nuclear receptors farnesoid X receptor(FXR),pregnane X receptor(PXR),and vitamin D receptor(VDR),as well as membrane receptors Takeda G protein receptor 5(TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cholinergic receptor muscarinic 2(CHRM2).All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure.Because epigenetic regulation is critical for organisms to adapt to constant environmental changes,this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid re-ceptors.In addition,the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs.Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.
基金This work was supported by the US National Institutes of Health(grants R01DK57543 and R01DK104893).
文摘Bile acids(BA)are synthesized from cholesterol in the liver.They are essential for promotion of the absorption of lipids,cholesterol,and lipid-soluble vitamins from the intestines.BAs are hormones that regulate nutrient metabolism by activating nuclear receptors(farnesoid X receptor(FXR),pregnane X receptor,vitamin D)and G protein-coupled receptors(e.g.,TGR5,sphingosine-1-phosphate receptor 2(S1PR2))in the liver and intestines.In the liver,S1PR2 activation by conjugated BAs activates the extracellular signal-regulated kinase 1/2 and AKT signaling pathways,and nuclear sphingosine kinase 2.The latter produces sphingosine-1-phosphate(S1P),an inhibitor of histone deacetylases 1/2,which allows for the differential up-regulation of expression of genes involved in the metabolism of sterols and lipids.We discuss here the emerging concepts of the interactions of BAs,FXR,insulin,S1P signaling and nutrient metabolism.
基金the USA National Institutes of Health(NIH)R01CA222490.
文摘Over 20%of mortality during acute liver failure is associated with the development of hepatic encephalopathy(HE).Thus,HE is a complication of acute liver failure with a broad spectrum of neuropsychiatric abnormalities ranging from subclinical alterations to coma.HE is caused by the diversion of portal blood into systemic circulation through portosystemic collateral vessels.Thus,the brain is exposed to intestinal-derived toxic substances.Moreover,the strategies to prevent advancement and improve the prognosis of such a liver-brain disease rely on intestinal microbial modulation.This is supported by the findings that antibiotics such as rifaximin and laxative lactulose can alleviate hepatic cirrhosis and/or prevent HE.Together,the significance of the gut-liver-brain axis in human health warrants attention.This review paper focuses on the roles of bacteria metabolites,mainly ammonia and bile acids(BAs)as well as BA receptors in HE.The literature search conducted for this review included searches for phrases such as BA receptors,BAs,ammonia,farnesoid X receptor(FXR),G protein-coupled bile acid receptor 1(GPBAR1 or TGR5),sphingosine-1-phosphate receptor 2(S1PR2),and cirrhosis in conjunction with the phrase hepatic encephalopathy and portosystemic encephalopathy.PubMed,as well as Google Scholar,was the search engines used to find relevant publications.