期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
1
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
下载PDF
Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection
2
作者 Jianguo Zheng Shuilin Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3619-3635,共17页
To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial populatio... To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm,this paper presents a new algorithm based on multi-strategy(ISMO).First,the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity.Second,this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency.Then,using the crisscross strategy,using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum.At last,we adopt a Gauss-Cauchy mutation strategy to improve the stability of the algorithm by mutation of the optimal individuals.Therefore,the application of ISMO is validated by ten benchmark functions and feature selection.It is proved that the proposed method can resolve the problem of feature selection. 展开更多
关键词 spider monkey optimization refracted opposition-based learning crisscross strategy Gauss-Cauchy mutation strategy feature selection
下载PDF
Spider monkey optimization based resource allocation and scheduling in fog computing environment 被引量:1
3
作者 Shahid Sultan Hajam Shabir Ahmad Sofi 《High-Confidence Computing》 2023年第3期81-88,共8页
Spider monkey optimization(SMO)is a quite popular and recent swarm intelligence algorithm for numerical optimization.SMO is Fission-Fusion social structure based algorithm inspired by spider monkey’s behavior.The alg... Spider monkey optimization(SMO)is a quite popular and recent swarm intelligence algorithm for numerical optimization.SMO is Fission-Fusion social structure based algorithm inspired by spider monkey’s behavior.The algorithm proves to be very efficient in solving various constrained and unconstrained optimization problems.This paper presents the application of SMO in fog computing.We propose a heuristic initialization based spider monkey optimization algorithm for resource allocation and scheduling in a fog computing network.The algorithm minimizes the total cost(service time and monetary cost)of tasks by choosing the optimal fog nodes.Longest job fastest processor(LJFP),shortest job fastest processor(SJFP),and minimum completion time(MCT)based initialization of SMO are proposed and compared with each other.The performance is compared based on the parameters of average cost,average service time,average monetary cost,and the average cost per schedule.The results demonstrate the efficacy of MCT-SMO as compared to other heuristic initialization based SMO algorithms and Particle Swarm Optimization(PSO). 展开更多
关键词 Swarm intelligence spider monkey optimization Fog computing Task scheduling
原文传递
Elite Opposition Based Metaheuristic Framework for Load Balancing in LTE Network
4
作者 M.R.Sivagar N.Prabakaran 《Computers, Materials & Continua》 SCIE EI 2022年第6期5765-5781,共17页
In present scenario of wireless communications,Long Term Evolution(LTE)based network technology is evolved and provides consistent data delivery with high speed andminimal delay through mobile devices.The traffic mana... In present scenario of wireless communications,Long Term Evolution(LTE)based network technology is evolved and provides consistent data delivery with high speed andminimal delay through mobile devices.The traffic management and effective utilization of network resources are the key factors of LTE models.Moreover,there are some major issues in LTE that are to be considered are effective load scheduling and traffic management.Through LTE is a depraved technology,it is been suffering from these issues.On addressing that,this paper develops an Elite Opposition based Spider Monkey Optimization Framework for Efficient Load Balancing(SMO-ELB).In this model,load computation of each mobile node is done with Bounding Theory based Load derivations and optimal cell selection for seamless communication is processed with Spider Monkey Optimization Algorithm.The simulation results show that the proposed model provides better results than exiting works in terms of efficiency,packet delivery ratio,Call Dropping Ratio(CDR)and Call Blocking Ratio(CBR). 展开更多
关键词 spider monkey optimization load balancing long term evolution optimal cell selection HANDOVER LTE networks QOS
下载PDF
Enhanced Metaheuristics-Based Clustering Scheme for Wireless Multimedia Sensor Networks
5
作者 R.Uma Mageswari Sara A.Althubiti +3 位作者 Fayadh Alenezi E.Laxmi Lydia Gyanendra Prasad Joshi Woong Cho 《Computers, Materials & Continua》 SCIE EI 2022年第11期4179-4192,共14页
Traditional Wireless Sensor Networks(WSNs)comprise of costeffective sensors that can send physical parameters of the target environment to an intended user.With the evolution of technology,multimedia sensor nodes have... Traditional Wireless Sensor Networks(WSNs)comprise of costeffective sensors that can send physical parameters of the target environment to an intended user.With the evolution of technology,multimedia sensor nodes have become the hot research topic since it can continue gathering multimedia content and scalar from the target domain.The existence of multimedia sensors,integrated with effective signal processing and multimedia source coding approaches,has led to the increased application of Wireless Multimedia Sensor Network(WMSN).This sort of network has the potential to capture,transmit,and receive multimedia content.Since energy is a major source in WMSN,novel clustering approaches are essential to deal with adaptive topologies of WMSN and prolonged network lifetime.With this motivation,the current study develops an Enhanced Spider Monkey Optimization-based Energy-Aware Clustering Scheme(ESMO-EACS)for WMSN.The proposed ESMO-EACS model derives ESMO algorithm by incorporating the concepts of SMO algorithm and quantum computing.The proposed ESMO-EACS model involves the design of fitness functions using distinct input parameters for effective construction of clusters.A comprehensive experimental analysis was conducted to validate the effectiveness of the proposed ESMO-EACS technique in terms of different performance measures.The simulation outcome established the superiority of the proposed ESMO-EACS technique to other methods under various measures. 展开更多
关键词 Wireless multimedia sensor networks CLUSTERING spider monkey optimization algorithm energy efficiency metaheuristics quantum computing
下载PDF
Taste responsiveness to two steviol glycosides in three species of nonhuman primates
6
作者 Sandra NICKLASSON Desiree SJOSTROM +3 位作者 Mats AMUNDIN Daniel ROTH Laura Teresa HERNANDEZ SALAZAR iatthias LASKA 《Current Zoology》 SCIE CAS CSCD 2018年第1期63-68,共6页
Primates have been found to differ widely in their taste perception and studies suggest that a coevolution between plant species bearing a certain taste substance and primate species feeding on these plants may contri... Primates have been found to differ widely in their taste perception and studies suggest that a coevolution between plant species bearing a certain taste substance and primate species feeding on these plants may contribute to such between-species differences. Considering that only platyrrhine primates, but not catarrhine or prosimian primates, share an evolutionary history with the neotrop- ical plant Stevia rebaudiana, we assessed whether members of these three primate taxa differ in their ability to perceive and/or in their sensitivity to its two quantitatively predominant sweet- tasting substances. We found that not only neotropical black-handed spider monkeys, but also paleotropical black-and-white ruffed lemurs and Western chimpanzees are clearly able to perceive stevioside and rebaudioside A. Using a two-bottle preference test of short duration, we found that Ateles geoffroyi preferred concentrations as low as 0.05 mM stevioside and 0.01 mM rebaudioside A over tap water. Taste preference thresholds of Pan troglodytes were similar to those of the spider monkeys, with 0.05 mM for stevioside and 0.03 mM for rebaudioside A, whereas Varecia variegata was slightly less sensitive with a threshold value of 0.1 mM for both substances. Thus, all three primate species are, similar to human subjects, clearly more sensitive to both steviol glycosides compared to sucrose. Only the spider monkeys displayed concentration-response curves with both stevioside and rebaudioside A which can best be described as an inverted U-shaped function sug- gesting that Ateles geoffroyi, similar to human subjects, may perceive a bitter side taste at higher concentrations of these substances. Taken together, the results of the present study do not support the notion that a co-evolution between plant and primate species may account for between-species differences in taste perception of steviol glycosides. 展开更多
关键词 taste preference thresholds STEVIOSIDE rebaudioside A Western chimpanzees spider monkeys black-and-white ruffed lemurs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部