Toxins from spider venom Crossopriza lyoni were subjected to purify on a Sepharose CL-6B 200 column. These were investigated for its antibacterial and antifungal activity against 13 infectious microbial pathogenic str...Toxins from spider venom Crossopriza lyoni were subjected to purify on a Sepharose CL-6B 200 column. These were investigated for its antibacterial and antifungal activity against 13 infectious microbial pathogenic strains. Antimicrobial susceptibility was determined by using paper disc diffusion and serial micro-dilution assays. Triton X-100 (0.1%) proved to be a good solubilizing agent for toxin/proteins. Higher protein solubilization was observed in the supernatant than in the residue, except TCA. The elution pattern of purified and homogenized sting glands displayed two major peaks at 280 nm. First one was eluted in fraction no. 43 - 51 while second one after fraction no. 61 - 90. From gel filtration chromatography total yield of protein obtained was 67.3%. From comparison of gel chromatographs eluted toxins peptide molecular weight was ranging from 6.2 - 64 kD. Toxin peptides have shown lower MIC values i.e. 7.5 - 15 μg/ml against K. pneumoniae, E. coli, L. acidophilus, B. cereus;against S. aureus and M. luteus that the broad spectrum antibiotics i.e. tetracycline and ampicillin. In tests, larger inhibition zone diameter was obtained in comparison to control. Diameter of inhibition zones obtained in spider toxins at a concentration range of 197.12 - 0.96 g/ml for E. coli was 17.86 ± 0.21, Bacillus cereus 19.13 ± 0.21, L. acidophilus 16.83 ± 0.25, Micrococcus luteus 18.46 ± 0.17, S. aeurus 16.23 ± 0.19, Klebsiella pneumoniae 21.83 ± 0.16, Salmonella typhi 16.16 ± 0.21, Vibrio cholera 18.66 ± 0.21, Pseudomonas aeruginosa 18.66 ± 0.21, Aspergillus niger 22.9 ± 0.24, Candida albicans 24.66 ± 0.28, Rhizopus stolonifer 21.1 ± 0.16. Spider toxins generate cytotoxic effect on bacterial cells that results in heavy cell death. No doubt spider toxins can be used as alternate of broad spectrum antibiotics.展开更多
Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, composi...Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom ofthese animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and comprehensive methods allows studying either of venoms available in tiny amounts or of low abundant components in already known venoms.展开更多
文摘Toxins from spider venom Crossopriza lyoni were subjected to purify on a Sepharose CL-6B 200 column. These were investigated for its antibacterial and antifungal activity against 13 infectious microbial pathogenic strains. Antimicrobial susceptibility was determined by using paper disc diffusion and serial micro-dilution assays. Triton X-100 (0.1%) proved to be a good solubilizing agent for toxin/proteins. Higher protein solubilization was observed in the supernatant than in the residue, except TCA. The elution pattern of purified and homogenized sting glands displayed two major peaks at 280 nm. First one was eluted in fraction no. 43 - 51 while second one after fraction no. 61 - 90. From gel filtration chromatography total yield of protein obtained was 67.3%. From comparison of gel chromatographs eluted toxins peptide molecular weight was ranging from 6.2 - 64 kD. Toxin peptides have shown lower MIC values i.e. 7.5 - 15 μg/ml against K. pneumoniae, E. coli, L. acidophilus, B. cereus;against S. aureus and M. luteus that the broad spectrum antibiotics i.e. tetracycline and ampicillin. In tests, larger inhibition zone diameter was obtained in comparison to control. Diameter of inhibition zones obtained in spider toxins at a concentration range of 197.12 - 0.96 g/ml for E. coli was 17.86 ± 0.21, Bacillus cereus 19.13 ± 0.21, L. acidophilus 16.83 ± 0.25, Micrococcus luteus 18.46 ± 0.17, S. aeurus 16.23 ± 0.19, Klebsiella pneumoniae 21.83 ± 0.16, Salmonella typhi 16.16 ± 0.21, Vibrio cholera 18.66 ± 0.21, Pseudomonas aeruginosa 18.66 ± 0.21, Aspergillus niger 22.9 ± 0.24, Candida albicans 24.66 ± 0.28, Rhizopus stolonifer 21.1 ± 0.16. Spider toxins generate cytotoxic effect on bacterial cells that results in heavy cell death. No doubt spider toxins can be used as alternate of broad spectrum antibiotics.
基金Supported by The research funding from Russian Foundation for Basic Research,No.15-04-01843
文摘Poisonous organisms are represented in many taxa, including kingdom Animalia. During evolution, animals have developed special organs for production and injection of venoms. Animal venoms are complex mixtures, compositions of which depend on species producing venom. The most known and studied poisonous terrestrial animals are snakes, scorpions and spiders. Among marine animals, these are jellyfishes, anemones and cone snails. The toxic substances in the venom ofthese animals are mainly of protein and peptide origin. Recent studies have indicated that the single venom may contain up to several hundred different components producing diverse physiological effects. Bites or stings by certain poisonous species result in severe envenomations leading in some cases to death. This raises the problem of bite treatment. The most effective treatment so far is the application of antivenoms. To enhance the effectiveness of such treatments, the knowledge of venom composition is needed. On the other hand, venoms contain substances with unique biological properties, which can be used both in basic science and in clinical applications. The best example of toxin application in basic science is α-bungarotoxin the discovery of which made a big impact on the studies of nicotinic acetylcholine receptor. Today compositions of venom from many species have already been examined. Based on these data, one can conclude that venoms contain a large number of individual components belonging to a limited number of structural types. Often minor changes in the amino acid sequence give rise to new biological properties. Change in the living conditions of poisonous animals lead to alterations in the composition of venoms resulting in appearance of new toxins. At the same time introduction of new methods of proteomics and genomics lead to discoveries of new compounds, which may serve as research tools or as templates for the development of novel drugs. The application of these sensitive and comprehensive methods allows studying either of venoms available in tiny amounts or of low abundant components in already known venoms.