Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,exces...Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.展开更多
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions...Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.展开更多
Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuro...Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing.Here,we proposed a multi-synaptic photonic SNN,combining the modified remote supervised learning with delayweight co-training to achieve pattern classification.The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations.In addition,the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber(DFB-SA),where 10 different noisy digital patterns were successfully classified.A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing,demonstrating the capability of hardware-algorithm co-computation.展开更多
In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spa...In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spatio-temporal information.However, the non-differential spike activity makes SNNs more difficult to train in supervised training. Most existing methods focusing on introducing an approximated derivative to replace it, while they are often based on static surrogate functions. In this paper, we propose a progressive surrogate gradient learning for backpropagation of SNNs, which is able to approximate the step function gradually and to reduce information loss. Furthermore, memristor cross arrays are used for speeding up calculation and reducing system energy consumption for their hardware advantage. The proposed algorithm is evaluated on both static and neuromorphic datasets using fully connected and convolutional network architecture, and the experimental results indicate that our approach has a high performance compared with previous research.展开更多
Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented...Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.展开更多
For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de...For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.展开更多
Spiking Neural Network is known as the third-generation artificial neural network whose development has great potential.With the help of Spike Layer Error Reassignment in Time for error back-propagation,this work pres...Spiking Neural Network is known as the third-generation artificial neural network whose development has great potential.With the help of Spike Layer Error Reassignment in Time for error back-propagation,this work presents a new network called SpikeGoogle,which is implemented with GoogLeNet-like inception module.In this inception module,different convolution kernels and max-pooling layer are included to capture deep features across diverse scales.Experiment results on small NMNIST dataset verify the results of the authors’proposed SpikeGoogle,which outperforms the previous Spiking Convolutional Neural Network method by a large margin.展开更多
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,...Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network.展开更多
Adolescent Idiopathic Scoliosis(AIS)is a deformity of the spine that affects teenagers.The current method for detecting AIS is based on radiographic images which may increase the risk of cancer growth due to radiation...Adolescent Idiopathic Scoliosis(AIS)is a deformity of the spine that affects teenagers.The current method for detecting AIS is based on radiographic images which may increase the risk of cancer growth due to radiation.Photogrammetry is another alternative used to identify AIS by distinguishing the curves of the spine from the surface of a human’s back.Currently,detecting the curve of the spine is manually performed,making it a time-consuming task.To overcome this issue,it is crucial to develop a better model that automatically detects the curve of the spine and classify the types of AIS.This research proposes a new integration of ESNN and Feature Extraction(FE)methods and explores the architecture of ESNN for the AIS classification model.This research identifies the optimal Feature Extraction(FE)methods to reduce computational complexity.The ability of ESNN to provide a fast result with a simplicity and performance capability makes this model suitable to be implemented in a clinical setting where a quick result is crucial.A comparison between the conventional classifier(Support Vector Machine(SVM),Multi-layer Perceptron(MLP)and Random Forest(RF))with the proposed AIS model also be performed on a dataset collected by an orthopedic expert from Hospital Universiti Kebangsaan Malaysia(HUKM).This dataset consists of various photogrammetry images of the human back with different types ofMalaysian AIS patients to solve the scoliosis problem.The process begins by pre-processing the images which includes resizing and converting the captured pictures to gray-scale images.This is then followed by feature extraction,normalization,and classification.The experimental results indicate that the integration of LBP and ESNN achieves higher accuracy compared to the performance of multiple baseline state-of-the-art Machine Learning for AIS classification.This demonstrates the capability of ESNN in classifying the types of AIS based on photogrammetry images.展开更多
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l...Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.展开更多
Learning from interaction is the primary way that biological agents acquire knowledge about their environment and themselves.Modern deep reinforcement learning(DRL)explores a computational approach to learning from in...Learning from interaction is the primary way that biological agents acquire knowledge about their environment and themselves.Modern deep reinforcement learning(DRL)explores a computational approach to learning from interaction and has made significant progress in solving various tasks.However,despite its power,DRL still falls short of biological agents in terms of energy efficiency.Although the underlying mechanisms are not fully understood,we believe that the integration of spiking communication between neurons and biologically-plausible synaptic plasticity plays a prominent role in achieving greater energy efficiency.Following this biological intuition,we optimized a spiking policy network(SPN)using a genetic algorithm as an energy-efficient alternative to DRL.Our SPN mimics the sensorimotor neuron pathway of insects and communicates through event-based spikes.Inspired by biological research showing that the brain forms memories by creating new synaptic connections and rewiring these connections based on new experiences,we tuned the synaptic connections instead of weights in the SPN to solve given tasks.Experimental results on several robotic control tasks demonstrate that our method can achieve the same level of performance as mainstream DRL methods while exhibiting significantly higher energy efficiency.展开更多
Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender systems.The existing floor localization systems have many drawbacks,like low accuracy,poo...Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender systems.The existing floor localization systems have many drawbacks,like low accuracy,poor scalability,and high computational costs.In this paper,we first frame the problem of floor localization as one of learning node embeddings to predict the floor label of a subgraph.Then,we introduce FloorLocator,a deep learning-based method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks.This approach offers high accuracy,easy scalability to new buildings,and computational efficiency.Experimental results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods.Notably,in building B0,FloorLocator achieved recognition accuracy of 95.9%,exceeding state-of-the-art methods by at least 10%.In building B1,it reached an accuracy of 82.1%,surpassing the latest methods by at least 4%.These results indicate FloorLocator’s superiority in multi-floor building environment localization.展开更多
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ...AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.展开更多
Inspired by the structure and principles of the human brain,spike neural networks(SNNs)appear as the latest generation of artificial neural networks,attracting significant and universal attention due to their remarkab...Inspired by the structure and principles of the human brain,spike neural networks(SNNs)appear as the latest generation of artificial neural networks,attracting significant and universal attention due to their remarkable low-energy transmission by pulse and powerful capability for large-scale parallel computation.Current research on artificial neural networks gradually change from software simulation into hardware implementation.However,such a process is fraught with challenges.In particular,memristors are highly anticipated hardware candidates owing to their fastprogramming speed,low power consumption,and compatibility with the complementary metal–oxide semiconductor(CMOS)technology.In this review,we start from the basic principles of SNNs,and then introduced memristor-based technologies for hardware implementation of SNNs,and further discuss the feasibility of integrating customized algorithm optimization to promote efficient and energy-saving SNN hardware systems.Finally,based on the existing memristor technology,we summarize the current problems and challenges in this field.展开更多
The vast amount of data generated by large-scale open online course platforms provide a solid foundation for the analysis of learning behavior in the field of education.This study utilizes the historical and final lea...The vast amount of data generated by large-scale open online course platforms provide a solid foundation for the analysis of learning behavior in the field of education.This study utilizes the historical and final learning behavior data of over 300000 learners from 17 courses offered on the edX platform by Harvard University and the Massachusetts Institute of Technology during the 2012-2013 academic year.We have developed a spike neural network to predict learning outcomes,and analyzed the correlation between learning behavior and outcomes,aiming to identify key learning behaviors that significantly impact these outcomes.Our goal is to monitor learning progress,provide targeted references for evaluating and improving learning effectiveness,and implement intervention measures promptly.Experimental results demonstrate that the prediction model based on online learning behavior using spiking neural network achieves an impressive accuracy of 99.80%.The learning behaviors that predominantly affect learning effectiveness are found to be students’academic performance and level of participation.展开更多
Convolutional neur al netw orks(CNNs)ar e widel y used in the field of fault diagnosis due to their strong feature-extraction capability.How ever,in eac h timeste p,CNNs onl y consider the curr ent input and ignor e a...Convolutional neur al netw orks(CNNs)ar e widel y used in the field of fault diagnosis due to their strong feature-extraction capability.How ever,in eac h timeste p,CNNs onl y consider the curr ent input and ignor e any cyclicity in time,ther efor e pr oducing difficulties in mining temporal features from the data.In this w ork,the third-gener ation neur al netw ork-the spiking neur al netw ork(SNN)-is utilized in bearing fault diagnosis.SNNs incorpor ate tempor al concepts and utilize discrete spike sequences in communication,making them more biolo gically e xplanatory.Inspired by the classic CNN LeNet-5 fr amew ork,a bearing fault diagnosis method based on a convolutional SNN is proposed.In this method,the spiking convolutional network and the spiking classifier network are constructed by using the inte gr ate-and-fire(IF)and leaky-inte gr ate-and-fire(LIF)model,respectively,and end-to-end training is conducted on the overall model using a surrogate gradient method.The signals are adaptively encoded into spikes in the spiking neuron layer.In addition,the network utilizes max-pooling,which is consistent with the spatial-temporal characteristics of SNNs.Combined with the spiking con volutional la y ers,the netw ork fully extracts the spatial-temporal featur es fr om the bearing vibration signals.Experimental validations and comparisons are conducted on bearings.The results show that the proposed method achieves high accuracy and takes fewer time steps.展开更多
Neuromorphic hardware,as a non-Von Neumann architecture,has better energy efficiency and parallelism than the conventional computer.Here,with the numerical modeling spin-orbit torque(SOT)device using current-induced S...Neuromorphic hardware,as a non-Von Neumann architecture,has better energy efficiency and parallelism than the conventional computer.Here,with the numerical modeling spin-orbit torque(SOT)device using current-induced SOT and Joule heating effects,we acquire its magnetization stochastic switching probability as a function of the interval time of input current pulses and use it to mimic the spike-timing-dependent plasticity learning behavior like actual brain working.We further demonstrate that the artificial spiking neural network(SNN)built by this SOT device can perform unsupervised handwritten digit recognition with an accuracy of 80%and logic operation learning.Our work provides a new clue to achieving SNN-based neuromorphic hardware using high-energy efficiency and nonvolatile spintronics nanodevices.展开更多
Spiking neural network,inspired by the human brain,consisting of spiking neurons and plastic synapses,is a promising solution for highly efficient data processing in neuromorphic computing.Recently,memristor-based neu...Spiking neural network,inspired by the human brain,consisting of spiking neurons and plastic synapses,is a promising solution for highly efficient data processing in neuromorphic computing.Recently,memristor-based neurons and synapses are becoming intriguing candidates to build spiking neural networks in hardware,owing to the close resemblance between their device dynamics and the biological counterparts.However,the functionalities of memristor-based neurons are currently very limited,and a hardware demonstration of fully memristor-based spiking neural networks supporting in-situ learning is very challenging.Here,a hybrid spiking neuron combining a memristor with simple digital circuits is designed and implemented in hardware to enhance neuron functions.The hybrid neuron with memristive dynamics not only realizes the basic leaky integrate-and-fire neuron function but also enables the in-situ tuning of the connected synaptic weights.Finally,a fully hardware spiking neural network with the hybrid neurons and memristive synapses is experimentally demonstrated for the first time,and in-situ Hebbian learning is achieved with this network.This work opens up a way towards the implementation of spiking neurons,supporting in-situ learning for future neuromorphic computing systems.展开更多
The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era.Photonics neuromorphic computing has attracted lots of attention due to t...The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era.Photonics neuromorphic computing has attracted lots of attention due to the fascinating advantages such as high speed,wide bandwidth,and massive parallelism.Here,we offer a review on the optical neural computing in our research groups at the device and system levels.The photonics neuron and photonics synapse plasticity are presented.In addition,we introduce several optical neural computing architectures and algorithms including photonic spiking neural network,photonic convolutional neural network,photonic matrix computation,photonic reservoir computing,and photonic reinforcement learning.Finally,we summarize the major challenges faced by photonic neuromorphic computing,and propose promising solutions and perspectives.展开更多
A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and control...A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and controlling some part of a human brain or body.Incoming visual information can be processed by the brain in millisecond intervals.The retina computes visual scenes and sends its output to the cortex in the form of neuronal spikes for further computation.Thus,the neuronal signal of interest for a retinal neuroprosthesis is the neuronal spike.Closed-loop computation in a neuroprosthesis includes two stages:encoding a stimulus as a neuronal signal,and decoding it back into a stimulus.In this paper,we review some of the recent progress that has been achieved in visual computation models that use spikes to analyze natural scenes that include static images and dynamic videos.We hypothesize that in order to obtain a better understanding of the computational principles in the retina,a hypercircuit view of the retina is necessary,in which the different functional network motifs that have been revealed in the cortex neuronal network are taken into consideration when interacting with the retina.The different building blocks of the retina,which include a diversity of cell types and synaptic connections-both chemical synapses and electrical synapses(gap junctions)-make the retina an ideal neuronal network for adapting the computational techniques that have been developed in artificial intelligence to model the encoding and decoding of visual scenes.An overall systems approach to visual computation with neuronal spikes is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual system.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61974164,62074166,62004219,62004220,and 62104256).
文摘Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.
基金financial supports from National Key Research and Development Program of China (2021YFB2801900,2021YFB2801901,2021YFB2801902,2021YFB2801904)National Natural Science Foundation of China (No.61974177)+1 种基金National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (62022062)The Fundamental Research Funds for the Central Universities (QTZX23041).
文摘Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.
基金supports from the National Key Research and Development Program of China (Nos.2021YFB2801900,2021YFB2801901,2021YFB2801902,2021YFB2801903,2021YFB2801904)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (No.62022062)+1 种基金the National Natural Science Foundation of China (No.61974177)the Fundamental Research Funds for the Central Universities (No.QTZX23041).
文摘Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing.Here,we proposed a multi-synaptic photonic SNN,combining the modified remote supervised learning with delayweight co-training to achieve pattern classification.The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations.In addition,the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber(DFB-SA),where 10 different noisy digital patterns were successfully classified.A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing,demonstrating the capability of hardware-algorithm co-computation.
基金Project supported by the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0565)the Fundamental Research Funds for the Central Universities(Grant No.SWU021002)the Graduate Research Innovation Project of Chongqing(Grant No.CYS22242)。
文摘In recent years, spiking neural networks(SNNs) have received increasing attention of research in the field of artificial intelligence due to their high biological plausibility, low energy consumption, and abundant spatio-temporal information.However, the non-differential spike activity makes SNNs more difficult to train in supervised training. Most existing methods focusing on introducing an approximated derivative to replace it, while they are often based on static surrogate functions. In this paper, we propose a progressive surrogate gradient learning for backpropagation of SNNs, which is able to approximate the step function gradually and to reduce information loss. Furthermore, memristor cross arrays are used for speeding up calculation and reducing system energy consumption for their hardware advantage. The proposed algorithm is evaluated on both static and neuromorphic datasets using fully connected and convolutional network architecture, and the experimental results indicate that our approach has a high performance compared with previous research.
文摘Medical image classification becomes a vital part of the design of computer aided diagnosis(CAD)models.The conventional CAD models are majorly dependent upon the shapes,colors,and/or textures that are problem oriented and exhibited complementary in medical images.The recently developed deep learning(DL)approaches pave an efficient method of constructing dedicated models for classification problems.But the maximum resolution of medical images and small datasets,DL models are facing the issues of increased computation cost.In this aspect,this paper presents a deep convolutional neural network with hierarchical spiking neural network(DCNN-HSNN)for medical image classification.The proposed DCNN-HSNN technique aims to detect and classify the existence of diseases using medical images.In addition,region growing segmentation technique is involved to determine the infected regions in the medical image.Moreover,NADAM optimizer with DCNN based Capsule Network(CapsNet)approach is used for feature extraction and derived a collection of feature vectors.Furthermore,the shark smell optimization algorithm(SSA)based HSNN approach is utilized for classification process.In order to validate the better performance of the DCNN-HSNN technique,a wide range of simulations take place against HIS2828 and ISIC2017 datasets.The experimental results highlighted the effectiveness of the DCNN-HSNN technique over the recent techniques interms of different measures.Please type your abstract here.
基金Supported by the National Natural Science Foundation of China (60904018, 61203040)the Natural Science Foundation of Fujian Province of China (2009J05147, 2011J01352)+1 种基金the Foundation for Distinguished Young Scholars of Higher Education of Fujian Province of China (JA10004)the Science Research Foundation of Huaqiao University (09BS617)
文摘For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.
基金sponsored by Key‐Area Research and Development Program of Guangdong Province,No.2020B0404020005.
文摘Spiking Neural Network is known as the third-generation artificial neural network whose development has great potential.With the help of Spike Layer Error Reassignment in Time for error back-propagation,this work presents a new network called SpikeGoogle,which is implemented with GoogLeNet-like inception module.In this inception module,different convolution kernels and max-pooling layer are included to capture deep features across diverse scales.Experiment results on small NMNIST dataset verify the results of the authors’proposed SpikeGoogle,which outperforms the previous Spiking Convolutional Neural Network method by a large margin.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018 YFB1306600)the National Natural Science Foundation of China(Grant Nos.62076207,62076208,and U20A20227)the Science and Technology Plan Program of Yubei District of Chongqing(Grant No.2021-17)。
文摘Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network.
基金This work is supported by the Ministry of Education Malaysia and Universiti Teknologi Malaysia through Research University Grant Scheme(Q.J130000.2651.16J63).
文摘Adolescent Idiopathic Scoliosis(AIS)is a deformity of the spine that affects teenagers.The current method for detecting AIS is based on radiographic images which may increase the risk of cancer growth due to radiation.Photogrammetry is another alternative used to identify AIS by distinguishing the curves of the spine from the surface of a human’s back.Currently,detecting the curve of the spine is manually performed,making it a time-consuming task.To overcome this issue,it is crucial to develop a better model that automatically detects the curve of the spine and classify the types of AIS.This research proposes a new integration of ESNN and Feature Extraction(FE)methods and explores the architecture of ESNN for the AIS classification model.This research identifies the optimal Feature Extraction(FE)methods to reduce computational complexity.The ability of ESNN to provide a fast result with a simplicity and performance capability makes this model suitable to be implemented in a clinical setting where a quick result is crucial.A comparison between the conventional classifier(Support Vector Machine(SVM),Multi-layer Perceptron(MLP)and Random Forest(RF))with the proposed AIS model also be performed on a dataset collected by an orthopedic expert from Hospital Universiti Kebangsaan Malaysia(HUKM).This dataset consists of various photogrammetry images of the human back with different types ofMalaysian AIS patients to solve the scoliosis problem.The process begins by pre-processing the images which includes resizing and converting the captured pictures to gray-scale images.This is then followed by feature extraction,normalization,and classification.The experimental results indicate that the integration of LBP and ESNN achieves higher accuracy compared to the performance of multiple baseline state-of-the-art Machine Learning for AIS classification.This demonstrates the capability of ESNN in classifying the types of AIS based on photogrammetry images.
基金supported financially by the fund from the Ministry of Science and Technology of China(Grant No.2019YFB2205100)the National Science Fund for Distinguished Young Scholars(No.52025022)+3 种基金the National Nature Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,1197407252272140 and 52372137)the‘111’Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ004 and 2412022QD036)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC and 20210509045RQ)。
文摘Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.
基金supported by the Beijing Nova Program,China(No.20230484369)the Strategic Priority Research Program of Chinese Academy of Sciences,China(No.XDA27010404)the Shanghai Municipal Science and Technology Major Project,China(No.2021SHZDZX),the Youth Innovation Promotion Association of the Chinese Academy of Sciences,China.
文摘Learning from interaction is the primary way that biological agents acquire knowledge about their environment and themselves.Modern deep reinforcement learning(DRL)explores a computational approach to learning from interaction and has made significant progress in solving various tasks.However,despite its power,DRL still falls short of biological agents in terms of energy efficiency.Although the underlying mechanisms are not fully understood,we believe that the integration of spiking communication between neurons and biologically-plausible synaptic plasticity plays a prominent role in achieving greater energy efficiency.Following this biological intuition,we optimized a spiking policy network(SPN)using a genetic algorithm as an energy-efficient alternative to DRL.Our SPN mimics the sensorimotor neuron pathway of insects and communicates through event-based spikes.Inspired by biological research showing that the brain forms memories by creating new synaptic connections and rewiring these connections based on new experiences,we tuned the synaptic connections instead of weights in the SPN to solve given tasks.Experimental results on several robotic control tasks demonstrate that our method can achieve the same level of performance as mainstream DRL methods while exhibiting significantly higher energy efficiency.
基金supported by the National Natural Science Foundation of China(No.42174050,62172066,62172064,62322601)National Science Foundation for Excellent Young Scholars(No.62322601)+5 种基金Open Research Projects of Zhejiang Lab(No.K2022NB0AB07)Venture&Innovation Support Program for Chongqing Overseas Returnees(No.cx2021047)Chongqing Startup Project for Doctorate Scholars(No.CSTB2022BSXM-JSX005)Excellent Youth Foundation of Chongqing(No.CSTB2023NSCQJQX0025)China Postdoctoral Science Foundation(No.2023M740402)Fundamental Research Funds for the Central Universities(No.2023CDJXY-038,2023CDJXY-039).
文摘Floor localization is crucial for various applications such as emergency response and rescue,indoor positioning,and recommender systems.The existing floor localization systems have many drawbacks,like low accuracy,poor scalability,and high computational costs.In this paper,we first frame the problem of floor localization as one of learning node embeddings to predict the floor label of a subgraph.Then,we introduce FloorLocator,a deep learning-based method for floor localization that integrates efficient spiking neural networks with powerful graph neural networks.This approach offers high accuracy,easy scalability to new buildings,and computational efficiency.Experimental results on using several public datasets demonstrate that FloorLocator outperforms state-of-the-art methods.Notably,in building B0,FloorLocator achieved recognition accuracy of 95.9%,exceeding state-of-the-art methods by at least 10%.In building B1,it reached an accuracy of 82.1%,surpassing the latest methods by at least 4%.These results indicate FloorLocator’s superiority in multi-floor building environment localization.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFA0716400)the National Natural Science Foundation of China(Grant Nos.62225405,62150027,61974080,61991443,61975093,61927811,61875104,62175126,and 62235011)+2 种基金the Ministry of Science and Technology of China(Grant Nos.2021ZD0109900 and 2021ZD0109903)the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving ElectronicsTsinghua University Initiative Scientific Research Program.
文摘AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI.
文摘Inspired by the structure and principles of the human brain,spike neural networks(SNNs)appear as the latest generation of artificial neural networks,attracting significant and universal attention due to their remarkable low-energy transmission by pulse and powerful capability for large-scale parallel computation.Current research on artificial neural networks gradually change from software simulation into hardware implementation.However,such a process is fraught with challenges.In particular,memristors are highly anticipated hardware candidates owing to their fastprogramming speed,low power consumption,and compatibility with the complementary metal–oxide semiconductor(CMOS)technology.In this review,we start from the basic principles of SNNs,and then introduced memristor-based technologies for hardware implementation of SNNs,and further discuss the feasibility of integrating customized algorithm optimization to promote efficient and energy-saving SNN hardware systems.Finally,based on the existing memristor technology,we summarize the current problems and challenges in this field.
文摘The vast amount of data generated by large-scale open online course platforms provide a solid foundation for the analysis of learning behavior in the field of education.This study utilizes the historical and final learning behavior data of over 300000 learners from 17 courses offered on the edX platform by Harvard University and the Massachusetts Institute of Technology during the 2012-2013 academic year.We have developed a spike neural network to predict learning outcomes,and analyzed the correlation between learning behavior and outcomes,aiming to identify key learning behaviors that significantly impact these outcomes.Our goal is to monitor learning progress,provide targeted references for evaluating and improving learning effectiveness,and implement intervention measures promptly.Experimental results demonstrate that the prediction model based on online learning behavior using spiking neural network achieves an impressive accuracy of 99.80%.The learning behaviors that predominantly affect learning effectiveness are found to be students’academic performance and level of participation.
基金supported by the Natural Science Foundation of China (Grants No.U1934219,62173137 and 52272347)the Hunan Pr ovincial Natur al Science Foundation of China (Grant No.2021JJ50001).
文摘Convolutional neur al netw orks(CNNs)ar e widel y used in the field of fault diagnosis due to their strong feature-extraction capability.How ever,in eac h timeste p,CNNs onl y consider the curr ent input and ignor e any cyclicity in time,ther efor e pr oducing difficulties in mining temporal features from the data.In this w ork,the third-gener ation neur al netw ork-the spiking neur al netw ork(SNN)-is utilized in bearing fault diagnosis.SNNs incorpor ate tempor al concepts and utilize discrete spike sequences in communication,making them more biolo gically e xplanatory.Inspired by the classic CNN LeNet-5 fr amew ork,a bearing fault diagnosis method based on a convolutional SNN is proposed.In this method,the spiking convolutional network and the spiking classifier network are constructed by using the inte gr ate-and-fire(IF)and leaky-inte gr ate-and-fire(LIF)model,respectively,and end-to-end training is conducted on the overall model using a surrogate gradient method.The signals are adaptively encoded into spikes in the spiking neuron layer.In addition,the network utilizes max-pooling,which is consistent with the spatial-temporal characteristics of SNNs.Combined with the spiking con volutional la y ers,the netw ork fully extracts the spatial-temporal featur es fr om the bearing vibration signals.Experimental validations and comparisons are conducted on bearings.The results show that the proposed method achieves high accuracy and takes fewer time steps.
基金supported by the National Natural Science Foundation of China(Grant No.12074178)the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology.
文摘Neuromorphic hardware,as a non-Von Neumann architecture,has better energy efficiency and parallelism than the conventional computer.Here,with the numerical modeling spin-orbit torque(SOT)device using current-induced SOT and Joule heating effects,we acquire its magnetization stochastic switching probability as a function of the interval time of input current pulses and use it to mimic the spike-timing-dependent plasticity learning behavior like actual brain working.We further demonstrate that the artificial spiking neural network(SNN)built by this SOT device can perform unsupervised handwritten digit recognition with an accuracy of 80%and logic operation learning.Our work provides a new clue to achieving SNN-based neuromorphic hardware using high-energy efficiency and nonvolatile spintronics nanodevices.
基金The authors thank the National High Technology Research Development Program(2017YFB0405600 and 2018YFA0701500)the National Key R&D Program(2019FYB2205101)+4 种基金the National Natural Science Foundation of China(61825404,61732020,61821091,61851402,61751401,and 61804171)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44000000)the China Postdoctoral Science Foundation(2020 M681167)the Major Scientific Research Project of Zhejiang Lab(2019KC0AD02)CASCroucher Funding(CAS18EG01 and 172511KYSB20180135).
文摘Spiking neural network,inspired by the human brain,consisting of spiking neurons and plastic synapses,is a promising solution for highly efficient data processing in neuromorphic computing.Recently,memristor-based neurons and synapses are becoming intriguing candidates to build spiking neural networks in hardware,owing to the close resemblance between their device dynamics and the biological counterparts.However,the functionalities of memristor-based neurons are currently very limited,and a hardware demonstration of fully memristor-based spiking neural networks supporting in-situ learning is very challenging.Here,a hybrid spiking neuron combining a memristor with simple digital circuits is designed and implemented in hardware to enhance neuron functions.The hybrid neuron with memristive dynamics not only realizes the basic leaky integrate-and-fire neuron function but also enables the in-situ tuning of the connected synaptic weights.Finally,a fully hardware spiking neural network with the hybrid neurons and memristive synapses is experimentally demonstrated for the first time,and in-situ Hebbian learning is achieved with this network.This work opens up a way towards the implementation of spiking neurons,supporting in-situ learning for future neuromorphic computing systems.
基金This work was supported in part by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(62022062)the National Natural Science Foundation of China(61974177,61674119)the Fundamental Research Funds for the Central Universities.
文摘The explosive growth of data and information has motivated various emerging non-von Neumann computational approaches in the More-than-Moore era.Photonics neuromorphic computing has attracted lots of attention due to the fascinating advantages such as high speed,wide bandwidth,and massive parallelism.Here,we offer a review on the optical neural computing in our research groups at the device and system levels.The photonics neuron and photonics synapse plasticity are presented.In addition,we introduce several optical neural computing architectures and algorithms including photonic spiking neural network,photonic convolutional neural network,photonic matrix computation,photonic reservoir computing,and photonic reinforcement learning.Finally,we summarize the major challenges faced by photonic neuromorphic computing,and propose promising solutions and perspectives.
基金supported by the National Basic Research Program of China(2015CB351806)the National Natural Science Foundation of China(61806011,61825101,61425025,and U1611461)+4 种基金the National Postdoctoral Program for Innovative Talents(BX20180005)the China Postdoctoral Science Foundation(2018M630036)the International Talent Exchange Program of Beijing Municipal Commission of Science and Technology(Z181100001018026)the Zhejiang Lab(2019KC0AB03 and 2019KC0AD02)the Royal Society Newton Advanced Fellowship(NAF-R1-191082).
文摘A neuroprosthesis is a type of precision medical device that is intended to manipulate the neuronal signals of the brain in a closed-loop fashion,while simultaneously receiving stimuli from the environment and controlling some part of a human brain or body.Incoming visual information can be processed by the brain in millisecond intervals.The retina computes visual scenes and sends its output to the cortex in the form of neuronal spikes for further computation.Thus,the neuronal signal of interest for a retinal neuroprosthesis is the neuronal spike.Closed-loop computation in a neuroprosthesis includes two stages:encoding a stimulus as a neuronal signal,and decoding it back into a stimulus.In this paper,we review some of the recent progress that has been achieved in visual computation models that use spikes to analyze natural scenes that include static images and dynamic videos.We hypothesize that in order to obtain a better understanding of the computational principles in the retina,a hypercircuit view of the retina is necessary,in which the different functional network motifs that have been revealed in the cortex neuronal network are taken into consideration when interacting with the retina.The different building blocks of the retina,which include a diversity of cell types and synaptic connections-both chemical synapses and electrical synapses(gap junctions)-make the retina an ideal neuronal network for adapting the computational techniques that have been developed in artificial intelligence to model the encoding and decoding of visual scenes.An overall systems approach to visual computation with neuronal spikes is necessary in order to advance the next generation of retinal neuroprosthesis as an artificial visual system.