A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated...A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography(MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz^(1/2), which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.展开更多
A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intens...A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.展开更多
The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium...The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.展开更多
The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard m...The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.展开更多
To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental r...To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.展开更多
The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly mag- netized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau-Li...The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly mag- netized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau-Lifshitz- Cilbert-Slonczewski equation. It is demonstrated numerically that the second-order uniaxial anisotropy plays a significant role in the occurrence of a zero-magnetic-field steady-state precession, which can be understood in terms of the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to the Gilbert damping. In particular, a relatively large zero-magnetic-field-oscillation current region, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by modulating the second-order uniaxial anisotropy of the free layer. These results suggest a tunable zero-magnetic-field STNO, and it may be a promising configuration for STNO's applications in future wireless communications.展开更多
A long life election spin resonance (ESR) signal at g=2.0006 was observed in the normal lens epithelium and cortical fibers. During ultraviolet (UV) exposure, a new ESR signal at g = 2.0060 was found in the lens epith...A long life election spin resonance (ESR) signal at g=2.0006 was observed in the normal lens epithelium and cortical fibers. During ultraviolet (UV) exposure, a new ESR signal at g = 2.0060 was found in the lens epithelium. But this specific signal was not detected in the lens cortical fibers. This suggested that lens epithelial cells were more susceptible to the free radical formation which was induced by UV light. By means of ESR spin probe oxymetry, the oxygen uptake of lens epithelial cells was meas...展开更多
A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which w...A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm.展开更多
We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement te...We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement techniques. Each spin qubit corresponds to two electrons in a double quantum dot in the nanowire, with the singlet and one of the triplets as the decoherence-free qubit states. The logical qubits are immunized against the dominant source of decoherence- dephasing--while the influences of additional errors are shown by numerical simulations. We analyse the performance and stability of all required operations and emphasize that all techniques are feasible in current experimental conditions.展开更多
So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We p...So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We propose a feasible setup allowing for a loophole-free test of the Bell inequalities. Two electron spin qubits of donors31P in a nanoscale silicon host in different cavities 300 m apart are entangled through a bright coherent light and postselections using homodyne measurements. The electron spins are then read out randomly and independently by Alice and Bob, respectively, with unity efficiency in less than 0.7 μs by using optically induced spin to charge transduction detected by radio-frequency single electron transistor. A violation of Bell inequality larger than 37% and 18% is achievable provided that the detection accuracy is 0.99 and 0.95, respectively.展开更多
A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. Howe...A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. However, the fluctuation of probe light intensity is one of the main technical error sources that limits the bias stability of the gyroscope. Here we propose a novel method to suppress the bias error induced by probe light intensity fluctuations. This method is based on the inherent magnetic field response characteristics of the gyroscope. By the application of a bias magnetic field, the gyroscope can be tuned to a working point where the output signal is insensitive to probe light intensity variation, referred to herein as ‘zero point’, thus the bias error induced by intensity fluctuations can be completely suppressed. The superiority of the method was verified on a K–Rb–21 Ne co-magnetometer, and a bias stability of approximately 0.01°/h was obtained. In addition, the method proposed here can remove the requirement of the closed-loop control of probe light intensity, thereby facilitating miniaturization of the gyroscope volume and improvement of reliability.展开更多
Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is sim...Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.展开更多
Objective To study the oxidative stress induced by consumption of mercury-contaminated rice in rats, and to assess the possible public health risk of mercury contamination in Wanshan mining area. Methods Sprague Dawle...Objective To study the oxidative stress induced by consumption of mercury-contaminated rice in rats, and to assess the possible public health risk of mercury contamination in Wanshan mining area. Methods Sprague Dawley rats were fed the mercury-contaminated rice produced from Wanshan area for 90 days. The antioxidant status and the free radicals in rat serum were evaluated. Results High mercury accumulation in organs of rats fed the mercury-contaminated rice confirmed the server pollution of mercury in Wanshan mining area. The intensity of electron spin resonance (ESR) signal increased by 87.38% in rats fed the rice from Wanshan compared with that in the control rats fed the rice from Shanghai, suggesting that chronic dietary consumption of rice from mercury mining area could induce an aggravation of free radicals. Feeding the mercury-contaminated rice was associated with significant decreases in the antioxidant enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and concentration of serum nitric oxide (NO), but it had no effect on serum nitric oxide synthase (NOS) activity. Feeding the mercury-contaminated rice raised the level of serum malonyldialdehyde (MDA), indicating the occurrence of oxidative stress. Conclusion The long-term dietary consumption of mercury-contaminated rice induces the aggravation of free radicals and exerts oxidative stress.展开更多
Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated ...Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0300600 and 2016YFA0301500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030000)the National Natural Science Foundation of China(Grant No.11474347)
文摘A miniature quad-channel optically pumped atomic magnetometer(OPM) has been developed based on the spinexchange relaxation-free(SERF) mechanism. With a vapor cell of size 8 mm×8 mm×8 mm, we have incorporated four SERF magnetometer channels, which provides sufficient spatial resolution for magnetoencephalography(MEG). The four channels share the same laser beam for the best cancellation of common mode noise due to laser fluctuations. With gradient measurement, the sensitivities of the four sensors are better than 6 fT/Hz^(1/2), which is also good enough for MEG measurement. The vapor cell is heated to 160℃ by a novel nonmagnetic current-heating structure. Our sensor with high spatial resolution and compact size is particularly suitable for MEG systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61227902)the National Key R&D Program of China(Grant No.2017YFB0503100)the Natural Science Foundation of Beijing Municipality,China(Grant No.4162038)
文摘A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.
基金supported by the National Natural Science Foundation of China(Grant No.61227902)
文摘The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HEUCFG201815)
文摘The steady flow field of a canard missile on different angles of attack and Mach numbers were studied. Based on analysis, a method was proposed to reduce the calculation for the rolling characteristics of the canard missile with free-spinning tails, and was tested to obtain the relations between rolling moment coefficient, Mach number, and angle of attack. All the computed rolling moment coefficients obtained from the proposed method greatly agreed with the experimental results of FD-06 wind tunnel in CAAA, which proved that the method can not only reduce the calculation cost but also keep precision in calculating the rolling characteristics of canard missiles.
文摘To study the rolling control characteristics of a canard-controlled missile, a series of wind tunnel experiment is conducted. The experimental method, the structure features of wind tunnel model and the experimental results are introduced in this paper. The experimental data show that the canard is an inefficient rolling control device for canard-controlled missile with fixed tail fins; but for the free-spinning tail fin configuration, the canard can conduct rolling control of the missile, and even have higher controlling efficiency under larger canard deflection angle.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204203 and 61274089the International Technology Collaboration Program of Shanxi Province under Grant No 201481029-2
文摘The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly mag- netized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau-Lifshitz- Cilbert-Slonczewski equation. It is demonstrated numerically that the second-order uniaxial anisotropy plays a significant role in the occurrence of a zero-magnetic-field steady-state precession, which can be understood in terms of the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to the Gilbert damping. In particular, a relatively large zero-magnetic-field-oscillation current region, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by modulating the second-order uniaxial anisotropy of the free layer. These results suggest a tunable zero-magnetic-field STNO, and it may be a promising configuration for STNO's applications in future wireless communications.
基金The work was sponsored by National Natural Science Foundation of China (NSFC)
文摘A long life election spin resonance (ESR) signal at g=2.0006 was observed in the normal lens epithelium and cortical fibers. During ultraviolet (UV) exposure, a new ESR signal at g = 2.0060 was found in the lens epithelium. But this specific signal was not detected in the lens cortical fibers. This suggested that lens epithelial cells were more susceptible to the free radical formation which was induced by UV light. By means of ESR spin probe oxymetry, the oxygen uptake of lens epithelial cells was meas...
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61227902,61374210,and 61121003)
文摘A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam's direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell's transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium's D1 line. Furthermore, the residual magnetic fields are measured with σ+- and σ--polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm.
基金supported by the National Natural Science Foundation of China (Grant No. 11004029)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422)+2 种基金the Ph. D. Program Foundation of the Ministry of Education of Chinathe Excellent Young Teachers Program of Southeast Universitythe National Basic Research Development Program of China(Grant No. 2011CB921203)
文摘We propose a deterministic generation and purification of decoherence-free spin entangled states with singlet-triplet spins in nanowire double quantum dots via resonator-assisted charge manipulation and measurement techniques. Each spin qubit corresponds to two electrons in a double quantum dot in the nanowire, with the singlet and one of the triplets as the decoherence-free qubit states. The logical qubits are immunized against the dominant source of decoherence- dephasing--while the influences of additional errors are shown by numerical simulations. We analyse the performance and stability of all required operations and emphasize that all techniques are feasible in current experimental conditions.
文摘So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We propose a feasible setup allowing for a loophole-free test of the Bell inequalities. Two electron spin qubits of donors31P in a nanoscale silicon host in different cavities 300 m apart are entangled through a bright coherent light and postselections using homodyne measurements. The electron spins are then read out randomly and independently by Alice and Bob, respectively, with unity efficiency in less than 0.7 μs by using optically induced spin to charge transduction detected by radio-frequency single electron transistor. A violation of Bell inequality larger than 37% and 18% is achievable provided that the detection accuracy is 0.99 and 0.95, respectively.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0501600 and 2017YFB0503100)the National Natural Science Foundation of China(Grant Nos.61773043,61673041,and 61721091)
文摘A nuclear spin gyroscope based on an alkali-metal–noble-gas co-magnetometer operated in spin-exchange relaxationfree(SERF) regime is a promising atomic rotation sensor for its ultra-high fundamental sensitivity. However, the fluctuation of probe light intensity is one of the main technical error sources that limits the bias stability of the gyroscope. Here we propose a novel method to suppress the bias error induced by probe light intensity fluctuations. This method is based on the inherent magnetic field response characteristics of the gyroscope. By the application of a bias magnetic field, the gyroscope can be tuned to a working point where the output signal is insensitive to probe light intensity variation, referred to herein as ‘zero point’, thus the bias error induced by intensity fluctuations can be completely suppressed. The superiority of the method was verified on a K–Rb–21 Ne co-magnetometer, and a bias stability of approximately 0.01°/h was obtained. In addition, the method proposed here can remove the requirement of the closed-loop control of probe light intensity, thereby facilitating miniaturization of the gyroscope volume and improvement of reliability.
基金Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)Shanghai Natural Science Foundation,China(No.13ZR1400900)Keygrant Project of Chinese Ministry of Education(No.113027A)
文摘Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.
基金This work was supported by National Natural Science Foundation of China (No. 20607014)
文摘Objective To study the oxidative stress induced by consumption of mercury-contaminated rice in rats, and to assess the possible public health risk of mercury contamination in Wanshan mining area. Methods Sprague Dawley rats were fed the mercury-contaminated rice produced from Wanshan area for 90 days. The antioxidant status and the free radicals in rat serum were evaluated. Results High mercury accumulation in organs of rats fed the mercury-contaminated rice confirmed the server pollution of mercury in Wanshan mining area. The intensity of electron spin resonance (ESR) signal increased by 87.38% in rats fed the rice from Wanshan compared with that in the control rats fed the rice from Shanghai, suggesting that chronic dietary consumption of rice from mercury mining area could induce an aggravation of free radicals. Feeding the mercury-contaminated rice was associated with significant decreases in the antioxidant enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and concentration of serum nitric oxide (NO), but it had no effect on serum nitric oxide synthase (NOS) activity. Feeding the mercury-contaminated rice raised the level of serum malonyldialdehyde (MDA), indicating the occurrence of oxidative stress. Conclusion The long-term dietary consumption of mercury-contaminated rice induces the aggravation of free radicals and exerts oxidative stress.
文摘Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.