The Cornell potential that consists of Coulomb and linear potentials has received a great deal of attention in particle physics. In this paper, we present the exact solutions of the Dirac equation with the pseudoscala...The Cornell potential that consists of Coulomb and linear potentials has received a great deal of attention in particle physics. In this paper, we present the exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits. The energy eigenvalues and corresponding eigenfunctions are given in closed form.展开更多
The bound state solutions of Dirac equations for a trigonometric Scarf potential with a new tensor potential under spin and pseudospin symmetry limits are investigated using Romanovski polynomials. The proposed new te...The bound state solutions of Dirac equations for a trigonometric Scarf potential with a new tensor potential under spin and pseudospin symmetry limits are investigated using Romanovski polynomials. The proposed new tensor potential is inspired by superpotential form in supersymmetric (SUSY) quantum mechanics. The Dirac equations with trigonometric Scarf potential coupled by a new tensor potential for the pseudospin and spin symmetries reduce to Schrtdinger-type equations with a shape invariant potential since the proposed new tensor potential is similar to the superpotential of trigonometric Scarf potential. The relativistic wave functions are exactly obtained in terms of Romanovski polynomials and the relativistic energy equations are also exactly obtained in the approximation scheme of centrifugal term. The new tensor potential removes the degeneracies both for pseudospin and spin symmetries.展开更多
In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum numb...In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.展开更多
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of...The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.展开更多
The Cornell potential consists of Coulomb and linear potentials, i.e.-a/r+br, that it has received a great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with t...The Cornell potential consists of Coulomb and linear potentials, i.e.-a/r+br, that it has received a great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits in 3+1 dimensions. The energy eigenvalues and corresponding eigenfunctions are given in explicit forms.展开更多
文摘The Cornell potential that consists of Coulomb and linear potentials has received a great deal of attention in particle physics. In this paper, we present the exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits. The energy eigenvalues and corresponding eigenfunctions are given in closed form.
基金supported by Hibah Peneliti Utama(PUT UNS)2014DIKTI(Grant No.165a/UN27.11/PN2013)
文摘The bound state solutions of Dirac equations for a trigonometric Scarf potential with a new tensor potential under spin and pseudospin symmetry limits are investigated using Romanovski polynomials. The proposed new tensor potential is inspired by superpotential form in supersymmetric (SUSY) quantum mechanics. The Dirac equations with trigonometric Scarf potential coupled by a new tensor potential for the pseudospin and spin symmetries reduce to Schrtdinger-type equations with a shape invariant potential since the proposed new tensor potential is similar to the superpotential of trigonometric Scarf potential. The relativistic wave functions are exactly obtained in terms of Romanovski polynomials and the relativistic energy equations are also exactly obtained in the approximation scheme of centrifugal term. The new tensor potential removes the degeneracies both for pseudospin and spin symmetries.
文摘In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.
基金Project supported by the Scientific and Technical Research Council of Turkey
文摘The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
文摘The Cornell potential consists of Coulomb and linear potentials, i.e.-a/r+br, that it has received a great deal of attention in particle physics. In this paper, we present exact solutions of the Dirac equation with the pseudoscalar Cornell potential under spin and pseudospin symmetry limits in 3+1 dimensions. The energy eigenvalues and corresponding eigenfunctions are given in explicit forms.