We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e...We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.展开更多
Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional...Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.展开更多
We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivitie...We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.展开更多
The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric ...The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.展开更多
We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spec...We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from 0 to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.展开更多
We study theoretically the transmission coefficients and the spin-tunneling time in ferromagnetic/semiconductor/ferromagnetic three-terminal heterojunction in the presence of Rashba spin-orbit interaction, in which on...We study theoretically the transmission coefficients and the spin-tunneling time in ferromagnetic/semiconductor/ferromagnetic three-terminal heterojunction in the presence of Rashba spin-orbit interaction, in which onedimensional quantum waveguide theory is developed and applied. Based on the group velocity concept and the particle current conservation principle, we calculate the spin-tunneling time as the function of the intensity of Rashba spinrblt coupling and the length of the semiconductor. We find that as the length of the semiconductor increases, the spintunneling time does not increase linearly but shows behavior of slight oscillation, i;brthermore, with the increasing of the soin-orbit coupling, the spin-tunneling time increases.展开更多
Spinel LiMn_(2)O_(4)is recognized as one of the most competitive cathode candidates for lithium-ion batteries ascribed to environmentally benign and rich sources.However,the wholesale application of LiMn_(2)O_(4)is pr...Spinel LiMn_(2)O_(4)is recognized as one of the most competitive cathode candidates for lithium-ion batteries ascribed to environmentally benign and rich sources.However,the wholesale application of LiMn_(2)O_(4)is predominately plagued by its severe capacity degradation,mainly associated with the innate Jahn-Teller effect.Herein,single-crystalline LiMn_(2)O_(4)with Eu^(3+) doping is rationally designed to mitigate the detrimental Jahn-Teller distortion by tuning the chemical environment of MnO_(6) octahedra and accommodating localized electron,based on the unique aspheric flexible 4f electron orbit of rare-earth metal ions.Notably,the stretching of MnO_(6) octahedron stemmed from the Jahn-Teller effect in Eu-doped LiMn_(2)O_(4)is effectively suppressed,confirmed by theoretical calculation.Meanwhile,the structural stability of the material has been significantly enhanced due to the robust Mn–O band coherency and weakened phase transition,proved by synchrotron radiation absorption spectrum and operando X-ray diffraction.The corresponding active cathode manifests superior long-cycle stability after 300 loops at 2C and displays only a 0.011%capacity drop per cycle even at 5C.Given this,this modification tactic sheds new light on achieving superior long-cycle performances by suppressing distortion in various cathode materials.展开更多
Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the...Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.展开更多
The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromag...The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120°to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density–density interaction, the number of halfskyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density–density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.展开更多
The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling we...The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.展开更多
We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin-orbit coupling induce...We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin-orbit coupling induces the splitting of asymmetric Fano-type resonance peaks in the conductivity, in which the dipole modulation and the homogeneous modulation are equivalent. Therefore, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.展开更多
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two...We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.展开更多
Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show th...Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.展开更多
Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. ...Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.展开更多
An accurate theoretical study on the MgH radical is reported by adopting the high-level relativistic MRCI+Q method with a quintuple-zeta quality basis set. The reliable potential energy curves of the five A-S states ...An accurate theoretical study on the MgH radical is reported by adopting the high-level relativistic MRCI+Q method with a quintuple-zeta quality basis set. The reliable potential energy curves of the five A-S states of MgH are derived. Then the associated spectroscopic parameters are determined and found to be in good accordance with the available experimental results. The permanent dipole moments (PDMs) and the spin-orbit (SO) matrix elements of A-S states are computed. The results show that the abrupt changes of PDMs and SO matrix elements are attributed to the variations of electronic configurations at the avoided crossing point. The SOC effect leads to the five A-S states split into ten Ω states and results in the double potential well of (2)1//2 state. Finally, the transition properties from the (2)1//2, (1)3//2 and (3)1//2 states to the ground state X2∑+1//2 transitions are obtained, including the transition dipole moments, Franck-Condon factors and radiative lifetimes.展开更多
Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment....Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment.In the present research,the heavy element doping effects in FCC-Ni(γ)and Ni_(3)Al(γ')systems are investigated in terms of their thermodynamic and mechanical properties,as well as electronic structures.The lattice constant,bulk modulus,elastic constant,and dopant formation energy in non-spin,spin polarized,and spin-orbit coupling(SOC)calculations are compared.The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements.We find that including spin for bothγandγ'phases is necessary and sufficient for most cases,but the dopant formation energy is sensitive to different spin effects,for instance,in the absence of SOC,even spin-polarized calculations give 1%to 9%variance in the dopant formation energy in our model.Electronic structures calculations indicate that spin polarization causes a split in the metal d states,and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system.展开更多
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable qu...Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect,which leads to distinctive valley-dependent transport properties compared with intrinsic graphene.In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase.Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region.However,the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength,accompanied by smooth variation of polarization reversal.Our findings provide new strategies to control the valley polarization in valleytronic devices.展开更多
We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarizat...We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.展开更多
We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that...We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.展开更多
The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting ...The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.展开更多
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110198)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2024A1515030131 and 2021A1515010214)+2 种基金the National Natural Science Foundation of China(Grant Nos.12274077,11905032,and 12475014)the Research Fund of the Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Israel Science Foundation(Grant No.1695/22).
文摘We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.
文摘Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
基金Project supported by the Shandong Province Natural Science Foundation(Grant No.ZR2021MF077)。
文摘We investigate the effect of Rashba spin-orbit coupling(RSOC)on photoconductivities of rectified currents in monolayer graphene with exchange field and sublattice potential.The system shows that the photoconductivities of resonant shift and injection current contributions are nonzero,while the photoconductivities of non-resonant shift current contribution are zero.We find that the RSOC induces a warping term,which leads to the nonzero rectified currents.Moreover,the photoconductivities of resonant injection(shift)current contribution are(not)related to the relaxation rate.The similar behavior can be found in other Dirac materials,and our findings provide a way to tune the nonlinear transport properties of Dirac materials.
文摘The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.
基金supported by the National Natural Science Foundation of China (Grant Nos 10475053,10775091 and 10774094)the Shanxi Natural Science Foundation,China (Grant No 20051002)
文摘We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from 0 to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574036 and 10574U37, and Natural Science Foundation of Hebei Province of China under Grant Nos. A2004000141 and 2005000143
文摘We study theoretically the transmission coefficients and the spin-tunneling time in ferromagnetic/semiconductor/ferromagnetic three-terminal heterojunction in the presence of Rashba spin-orbit interaction, in which onedimensional quantum waveguide theory is developed and applied. Based on the group velocity concept and the particle current conservation principle, we calculate the spin-tunneling time as the function of the intensity of Rashba spinrblt coupling and the length of the semiconductor. We find that as the length of the semiconductor increases, the spintunneling time does not increase linearly but shows behavior of slight oscillation, i;brthermore, with the increasing of the soin-orbit coupling, the spin-tunneling time increases.
基金financially supported by the National Natural Science Foundation of China(U21A20284)the National Key Research and Development Program of China(2019YFC1907805)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0072)。
文摘Spinel LiMn_(2)O_(4)is recognized as one of the most competitive cathode candidates for lithium-ion batteries ascribed to environmentally benign and rich sources.However,the wholesale application of LiMn_(2)O_(4)is predominately plagued by its severe capacity degradation,mainly associated with the innate Jahn-Teller effect.Herein,single-crystalline LiMn_(2)O_(4)with Eu^(3+) doping is rationally designed to mitigate the detrimental Jahn-Teller distortion by tuning the chemical environment of MnO_(6) octahedra and accommodating localized electron,based on the unique aspheric flexible 4f electron orbit of rare-earth metal ions.Notably,the stretching of MnO_(6) octahedron stemmed from the Jahn-Teller effect in Eu-doped LiMn_(2)O_(4)is effectively suppressed,confirmed by theoretical calculation.Meanwhile,the structural stability of the material has been significantly enhanced due to the robust Mn–O band coherency and weakened phase transition,proved by synchrotron radiation absorption spectrum and operando X-ray diffraction.The corresponding active cathode manifests superior long-cycle stability after 300 loops at 2C and displays only a 0.011%capacity drop per cycle even at 5C.Given this,this modification tactic sheds new light on achieving superior long-cycle performances by suppressing distortion in various cathode materials.
文摘Using the perturbation method, we theoretically study the spin current and its heat effect in a multichannel quantum wire with Rashba spin-orbit coupling. The heat generated by the spin current is calculated. With the increase of the width of the quantum wire, the spin current and the heat generated both exhibit period oscillations with equal amplitudes. When the quantum-channel number is doubled, the oscillation periods of the spin current and of the heat generated both decrease by a factor of 2. For the spin current js,xy, the amplitude increases with the decrease of the quantum channel; while the amplitude of the spin current js,yx remains the same. Therefore we conclude that the effect of the quantum-channel number on the spin current js,xy is greater than that on the spin current js,yx. The strength of the Rashba spin-orbit coupling is tunable by the gate voltage, and the gate voltage can be varied experimentally, which implies a new method of detecting the. spin current. In addition, we can control the amplitude and the oscillation period of the spin current by controlling the number of the quantum channels. All these characteristics of the spin current will be very important for detecting and controlling the spin current, and especially for designing new spintronic devices in the future.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301500)the National Natural Science Foundation of China(Grant Nos.61835013 and 11971067)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB01020300 and XDB21030300)the Beijing Natural Science Foundation,China(Grant No.1182009)the Beijing Great Wall Talents Cultivation Program(Grant No.CIT&TCD20180325).
文摘The ground state properties of the rotating Bose–Einstein condensates(BECs) with SU(3) spin–orbit coupling(SOC)in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120°to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density–density interaction, the number of halfskyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density–density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.
基金supported by the National Natural Science Foundation of China (Grant No.10874049)
文摘The various competing contributions to the anomalous Hall effect in spin-polarized two-dimensional electron gases in the presence of both intrinsic, extrinsic and external electric-field induced spin-orbit coupling were investigated theoretically. Based on a unified semiclassical theoretical approach, it is shown that the total anomalous Hall conductivity can be expressed as the sum of three distinct contributions in the presence of these competing spin-orbit interactions, namely an intrinsic contribution determined by the Berry curvature in the momentum space, an extrinsic contribution determined by the modified Bloch band group velocity and an extrinsic contribution determined by spin-orbit-dependent impurity scattering. The characteristics of these competing contributions are discussed in detail in the paper.
基金supported by the National Natural Science Foundation of China (Grant Nos 10475053,10775091 and 10774094)the Shanxi Natural Science Foundation of China (Grant No 20051002)
文摘We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin-orbit coupling induces the splitting of asymmetric Fano-type resonance peaks in the conductivity, in which the dipole modulation and the homogeneous modulation are equivalent. Therefore, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10775091,10774094,10974124,and 11047172)the Excellent Youth and Midlife Scientist Scientific Research Encouragement Foundation of Shandong Province,China(Grant No. BS2010DS006)the Doctor Research Startup Foundation of Linyi University,China (Grant No. BS201023)
文摘We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176089)Hebei Provincial Natural Science Foundation,China(Grant No.A2011205092)
文摘Transport properties in a multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and the transport matrix metLod. The results show that conduc- tances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176089 and 11504083)the Foundation of Shijiazhuang University,China(Grant No.XJPT002)
文摘Using a transfer matrix method, we investigate spin transport through a chain of polygonal rings with Dresselhaus spin-orbit coupling(DSOC). The spin conductance is dependent on the number of sides in the polygons. When DSOC is considered in a chain which also has Rashba spin-orbit coupling(RSOC) of the same magnitude, the total conductance is the same as that for the same chain with no SOC. However, when the two types of SOC have different values, there results a unique anisotropic conductance.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11564019,11574114,11147158,91221301 and 11264020the Natural Science Foundation of Jilin Province under Grant No 20150101003JC
文摘An accurate theoretical study on the MgH radical is reported by adopting the high-level relativistic MRCI+Q method with a quintuple-zeta quality basis set. The reliable potential energy curves of the five A-S states of MgH are derived. Then the associated spectroscopic parameters are determined and found to be in good accordance with the available experimental results. The permanent dipole moments (PDMs) and the spin-orbit (SO) matrix elements of A-S states are computed. The results show that the abrupt changes of PDMs and SO matrix elements are attributed to the variations of electronic configurations at the avoided crossing point. The SOC effect leads to the five A-S states split into ten Ω states and results in the double potential well of (2)1//2 state. Finally, the transition properties from the (2)1//2, (1)3//2 and (3)1//2 states to the ground state X2∑+1//2 transitions are obtained, including the transition dipole moments, Franck-Condon factors and radiative lifetimes.
基金the National Key Research and Development Program of China(Grant Nos.2017YFB0701603 and 2017YFB0701502).
文摘Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment.In the present research,the heavy element doping effects in FCC-Ni(γ)and Ni_(3)Al(γ')systems are investigated in terms of their thermodynamic and mechanical properties,as well as electronic structures.The lattice constant,bulk modulus,elastic constant,and dopant formation energy in non-spin,spin polarized,and spin-orbit coupling(SOC)calculations are compared.The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements.We find that including spin for bothγandγ'phases is necessary and sufficient for most cases,but the dopant formation energy is sensitive to different spin effects,for instance,in the absence of SOC,even spin-polarized calculations give 1%to 9%variance in the dopant formation energy in our model.Electronic structures calculations indicate that spin polarization causes a split in the metal d states,and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system.
基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ17A040001)the National Natural Science Foundation of China(Grant Nos.61874078,11647046,and 61904125)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFB2202100)the Science and Technology Planning Project of Wenzhou City(Grant No.G20180012).
文摘Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect,which leads to distinctive valley-dependent transport properties compared with intrinsic graphene.In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase.Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region.However,the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength,accompanied by smooth variation of polarization reversal.Our findings provide new strategies to control the valley polarization in valleytronic devices.
文摘We study the properties of superfluid in a two-dimensional (2D) polarized Fermi gas with spin-orbit coupling and adiabatic rotation which are trapped in a harmonic potential. Due to the competition between polarization, spin-orbit coupling, and adiabatic rotation, the Fermi gas exhibits many intriguing phenomena. By using the Bardeen-Cooper-Schrieffer (BCS) mean-field method with local density approximation, we investigate the dependence of order parameter solution on the spin-orbit coupling strength and the rotation velocity. The energy spectra with different rotation velocities are studied in detail. Besides, the conditions for the zero-energy Majorana fermions in topological superfluid phase to be observed are obtained. By investigating distributions of number density, we find that the rotation has opposite effect on the distribution of number density with different spins, which leads to the enhancement of the polarization of Fermi gas. Here, we focus on the region of BCS pairing and ignore the Fulde-Ferrell-Larkin-Ovchinnikov state.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10564004)Korea Research Foundation(Grant No. KRF-2005-070-C00065)
文摘We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer Biittiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474033 and 60676056)the State Key Projects of Basic Research of China (Grant Nos 2006CB0L1000 and 2005CB623605)
文摘The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positionsl unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.