期刊文献+
共找到19,963篇文章
< 1 2 250 >
每页显示 20 50 100
Determination of spin-orbit splitting Δ_0 of valence band at Γ for gallium phosphide nanoparticles using fluorescence and infrared spectroscopes
1
作者 ZHANG Zhaochun LI Jianlin 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期510-515,共6页
The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infra... The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV. 展开更多
关键词 spin-orbit splitting NANOPARTICLES gallium phosphide FLUORESCENCE infrared absorption
下载PDF
Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
2
作者 Jianbao Zhu Wei Qin Wenguang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期485-491,共7页
Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semicon... Based on first-principles density functional theory calculation,we discover a novel form of spin-orbit(SO)splitting in two-dimensional(2D)heterostructures composed of a single Bi(111)bilayer stacking with a 2D semiconducting In_(2)Se_(2) or a 2D ferroelectricα-In_(2)Se_(3) layer.Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum,where the chirality of the spin texture reverses within the upper spin-split branch,in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point.The ferroelectric nature ofα-In_(2)Se_(3) further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field.Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction.This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications. 展开更多
关键词 spin-orbit splitting two-dimensional heterostructure first-principles calculation
下载PDF
Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe_(2) with Low Substitution of Ti for Zr
3
作者 Sheng Wang Zia ur Rehman +9 位作者 Zhanfeng Liu Tongrui Li Yuliang Li Yunbo Wu Hongen Zhu Shengtao Cui Yi Liu Guobin Zhang Li Song Zhe Sun 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第7期69-73,共5页
Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic... Tuning the bandgap in layered transition metal dichalcogenides(TMDCs) is crucial for their versatile applications in many fields. The ternary formation is a viable method to tune the bandgap as well as other intrinsic properties of TMDCs, because the multi-elemental characteristics provide additional tunability at the atomic level and advantageously alter the physical properties of TMDCs. Herein, ternary Ti_(x)Zr_(1-x)Se_(2) single crystals were synthesized using the chemical-vapor-transport method. The changes in electronic structures of ZrSe_(2) induced by Ti substitution were revealed using angle-resolved photoemission spectroscopy. Our data show that at a low level of Ti substitution, the bandgap of Ti_(x)Zr_(1-x)Se_(2) decreases monotonically, and the electronic system undergoes a transition from a semiconducting to a metallic state without a significant variation of dispersions of valence bands. Meanwhile, the size of spin-orbit splitting dominated by Se 4p orbitals decreases with the increase of Ti doping. Our work shows a convenient way to alter the bandgap and spin-orbit coupling in TMDCs at the low level of substitution of transition metals. 展开更多
关键词 RED Tailoring of Bandgap and spin-orbit splitting in ZrSe_(2)with Low Substitution of Ti for Zr
下载PDF
Bimetallic Single‑Atom Catalysts for Water Splitting
4
作者 Megha A.Deshmukh Aristides Bakandritsos Radek Zbořil 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期1-45,共45页
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ... Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process. 展开更多
关键词 Single-atom catalysts Single-atom dimers Hydrogen evolution Oxygen evolution Water splitting
下载PDF
Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
5
作者 Huan-Bo Luo Xin-Feng Zhang +2 位作者 Runhua Li Yongyao Li Bin Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期159-165,共7页
We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e... We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments. 展开更多
关键词 spin-orbit coupling Bessel vortices variational method
下载PDF
Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
6
作者 Jia-Li Chen Sai-Yan Chen +2 位作者 Li Wen Xue-Li Cao Mao-Wang Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期457-461,共5页
Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depe... Combining theory and computation,we explore the Goos–H¨anchen(GH)effect for electrons in a single-layered semiconductor microstructure(SLSM)modulated by Dresselhaus spin–orbit coupling(SOC).GH displacement depends on electron spins thanks to Dresselhaus SOC,therefore electron spins can be separated from the space domain and spinpolarized electrons in semiconductors can be realized.Both the magnitude and sign of the spin polarization ratio change with the electron energy,in-plane wave vector,strain engineering and semiconductor layer thickness.The spin polarization ratio approaches a maximum at resonance;however,no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector.More importantly,the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness,giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics. 展开更多
关键词 semiconductor spintronics single-layered semiconductor microstructure(SLSM) spin-orbit coupling(SOC) Goos-Hänchen(GH)effect electron-spin polarization
下载PDF
Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting 被引量:2
7
作者 Huilin Hou Gang Shao +2 位作者 Yang Wang Wai‐Yeung Wong Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期164-221,共58页
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p... Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed. 展开更多
关键词 hydrogen PHOTOANODE PHOTOELECTROCHEMICAL SUBSTRATES water splitting
下载PDF
Defect engineering in transition-metal(Fe,Co,andNi)-based electrocatalysts for water splitting 被引量:1
8
作者 Kaili Wu Chaojie Lyu +5 位作者 Jiarun Cheng Weifan Ding Jiwen Wu Qian Wang Woon-Ming Lau Jinlong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期165-199,共35页
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De... Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications. 展开更多
关键词 defect engineering electrocatalytic water splitting element doping interfacial engineering VACANCY
下载PDF
Deactivation mechanism for water splitting:Recent advances 被引量:1
9
作者 Yansong Jia Yang Li +8 位作者 Qiong Zhang Sohail Yasin Xinyu Zheng Kai Ma Zhengli Hua Jianfeng Shi Chaohua Gu Yuhai Dou Shixue Dou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期53-82,共30页
Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attentio... Hydrogen(H_(2)) has been regarded as a promising alternative to fossil-fuel energy.Green H_(2) produced via water electrolysis(WE)powered by renewable energy could achieve a zero-carbon footprint.Considerable attention has been focused on developing highly active catalysts to facilitate the reaction kinetics and improve the energy efficiency of WE.However,the stability of the electrocatalysts hampers the commercial viability of WE.Few studies have elucidated the origin of catalyst degradation.In this review,we first discuss the WE mechanism,including anodic oxygen evolution reaction(OER)and cathodic hydrogen evolution reaction(HER).Then,we provide strategies used to enhance the stability of electrocatalysts.After that,the deactivation mechanisms of the typical commercialized HER and OER catalysts,including Pt,Ni,RuO_(2),and IrO_(2),are summarized.Finally,the influence of fluctuating energy on catalyst degradation is highlighted and in situ characterization methodologies for understanding the dynamic deactivation processes are described. 展开更多
关键词 deactivation mechanism hydrogen evolution in situ characterization oxygen evolution water splitting
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting 被引量:1
10
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction Hydrogen evolution reaction Nickel single atoms Water splitting
下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
11
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting 被引量:1
12
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 Ionic liquid Electrochemical water splitting Hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Variations of shear-wave splitting parameters in the source region of the 2023 Türkiye doublet earthquakes 被引量:1
13
作者 Xuelai Cao Lijun Chang 《Earthquake Science》 2024年第2期174-187,共14页
In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1... In this study,the shear-wave splitting parameters of local seismic events from the source regions of the 2023 Türkiye MW7.7 and MW7.6 doublet earthquakes(event 1 and event 2,respectively)were measured from June 1,2022,to April 25,2023,and their spatiotemporal characteristics were analyzed.The results revealed clear spatial and temporal differences.Spatially,the dominant fast-wave polarization direction at each station shows a strong correlation with the direction of the maximum horizontal principal compressive stress,as characterized by focal mechanism solutions of seismic events(MW≥3.5)near the station.The dominant fast-wave polarization direction and the regional stress field also showed a strong correlation with the intermovement of the Arabian Plate,African Plate,and Anatolian Block.Along the Nurdagi-Pazarcik fault zone,the seismic fault of event 1,stations closer to the middle of the fault where the mainshock occurred exhibited notably greater delay times than stations located towards the ends of the fault and far from the mainshock.In addition,the stations located to the east of the Nurdagi-Pazarcik fault and to the north of the Sürgüfault also exhibited large delay times.The spatial distribution of shear-wave splitting parameters obtained from each station indicates that the upper-crust anisotropy in the source area is mainly controlled by the regional stress field,which is closely related to the state of the block motion.During the seismogenic process of the MW7.7 earthquake,more stress accumulated in the middle of the Nurdagi-Pazarcik fault than at either end of the fault.Under the influence of the MW7.7 and MW7.6 events,the stress that accumulated during the seismogenic process of the earthquake doublet may have migrated towards some areas outside the aftershock intensive area after the earthquakes,and the crustal stress and its adjustment range near the outer stations increased significantly.With the exception of two stations with few effective events,all stations showed a consistent change in shear-wave splitting parameters over time.In particular,each station showed a decreasing trend in delay times after the doublet earthquakes,reflecting the obvious intensification of crustal stress adjustment in the seismogenic zone after the doublet earthquakes.With the occurrence of the earthquake doublet and a large number of aftershocks,the stress accumulated during the seismogenic process of the doublet earthquakes is gradually released,and then the adjustment range of crustal stress is also gradually reduced. 展开更多
关键词 Türkiye doublet earthquakes shear-wave splitting upper crustal anisotropy stress field
下载PDF
Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction 被引量:8
14
作者 LIU Jia XIAO Jing-Ling 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期761-765,共5页
We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. O... We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron area/density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's. 展开更多
关键词 asymmetric heterostructures SPINTRONICS triangular potential approximation Rashba spin-orbit interaction
下载PDF
Acoustic Bilayer Gradient Metasurfaces for Perfect and Asymmetric Beam Splitting
15
作者 权家琪 孙宝印 +2 位作者 伏洋洋 高雷 徐亚东 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期39-50,共12页
We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the int... We experimentally and theoretically present a paradigm for the accurate bilayer design of gradient metasurfaces for wave beam manipulation,producing an extremely asymmetric splitting effect by simply tailoring the interlayer size.This concept arises from anomalous diffraction in phase gradient metasurfaces and the precise combination of the phase gradient in bilayer metasurfaces.Ensured by different diffraction routes in momentum space for incident beams from opposite directions,extremely asymmetric acoustic beam splitting can be generated in a robust way,as demonstrated in experiments through a designed bilayer system.Our work provides a novel approach and feasible platform for designing tunable devices to control wave propagation. 展开更多
关键词 SURFACES splitting ASYMMETRIC
下载PDF
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
16
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION VACANCY Bifunctional electrocatalyst Overall water splitting
下载PDF
Tuning MXenes Towards Their Use in Photocatalytic Water Splitting
17
作者 Diego Ontiveros Sergi Vela +1 位作者 Francesc Viñes Carmen Sousa 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期321-331,共11页
Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,densi... Finding appropriate photocatalysts for solar-driven water(H_(2)O)splitting to generate hydrogen(H_(2))fuel is a challenging task,particularly when guided by conventional trial-and-error experimental methods.Here,density functional theory(DFT)is used to explore the MXenes photocatalytic properties,an emerging family of two-dimensional(2D)transition metal carbides and nitrides with chemical formula M_(n+1)X_(n)T_(x),known to be semiconductors when having T_(x)terminations.More than 4,000 MXene structures have been screened,considering different compositional(M,X,T_(x),and n)and structural(stacking and termination position)factors,to find suitable MXenes with a bandgap in the visible region and band edges that align with the water-splitting half-reaction potentials.Results from bandgap analysis show how,in general,MXenes with n=1 and transition metals from group III present the most cases with bandgap and promising sizes,with C-MXenes being superior to N-MXenes.From band alignment calculations of candidate systems with a bandgap larger than 1.23 eV,the minimum required for a water-splitting process,Sc_(2)CT_(2),Y_(2)CT_(2)(T_(x)=Cl,Br,S,and Se)and Y_(2)CI_(2)are highlighted as adequate photocatalysts. 展开更多
关键词 Density Functional Theory MXenes PHOTOCATALYSIS Water splitting
下载PDF
The component-activity interrelationship of cobalt-based bifunctional electrocatalysts for overall water splitting:Strategies and performance
18
作者 Mingjie Sun Riyue Ge +4 位作者 Sean Li Liming Dai Yiran Li Bin Liu Wenxian Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期453-474,共22页
Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysi... Cobalt-based electrocatalysts take advantage of potentially harmonizable microstructure and flexible coupling effects compared to commercial noble metal-based catalytic materials.However,conventional water electrolysis systems based on cobalt-based monofunctional hydrogen evolution reaction(HER)or oxygen evolution reaction(OER)catalysts have certain shortcomings in terms of resource utilization and universality.In contrast,cobalt-based bifunctional catalysts(CBCs)have attracted much attention in recent years for overall water splitting systems because of their practicality and reduced preparation cost of electrolyzer.This review aims to address the latest development in CBCs for total hydrolysis.The main modification strategies of CBCs are systematically classified in water electrolysis to provide an overview of how to regulate their morphology and electronic configuration.Then,the catalytic performance of CBCs in total-hydrolysis is summarized according to the types of cobalt-based phosphides,sulfides and oxides,and the mechanism of strengthened electrocatalytic ability is emphasized through combining experiments and theoretical calculations.Future efforts are finally suggested to focus on exploring the dynamic conversion of reaction intermediates and building near-industrial CBCs,designing advanced CBC materials through micro-modulation,and addressing commercial applications. 展开更多
关键词 COBALT Bifunctional electrocatalysis Water splitting Modification strategies Electrocatalytic performances
下载PDF
Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting
19
作者 Yaobin Wang Qian Lu +7 位作者 Xinlei Ge Feng Li Le Chen Zhihui Zhang Zhengping Fu Yalin Lu Yang Song Yunfei Bu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期344-355,共12页
Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy... Industrial water splitting has long been suppressed by the sluggish kinetics of the oxygen evolution reaction(OER),which requires a catalyst to be efficient.Herein,we propose a molecular-level proton acceptor strategy to produce an efficient OER catalyst that can boost industrial-scale water splitting.Molecular-level phosphate(-PO_(4))group is introduced to modify the surface of PrBa_(0.5)Ca_(0.5)Co_(2)O_(5)+δ(PBCC).The achieved catalyst(PO_(4)-PBCC)exhibits significantly enhanced catalytic performance in alkaline media.Based on the X-ray absorption spectroscopy results and density functional theory(DFT)calculations,the PO_(4)on the surface,which is regarded as the Lewis base,is the key factor to overcome the kinetic limitation of the proton transfer process during the OER.The use of the catalyst in a membrane electrode assembly(MEA)is further evaluated for industrial-scale water splitting,and it only needs a low voltage of 1.66 V to achieve a large current density of 1 A cm^(-2).This work provides a new molecular-level strategy to develop highly efficient OER electrocatalysts for industrial applications. 展开更多
关键词 Oxygen evolution reaction NANOFIBER Water splitting Proton acceptor PEROVSKITE
下载PDF
Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
20
作者 Qian Wang Da-Wei Wu +2 位作者 Guang-Hua Guo Meng-Qiu Long Yun-Peng Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期194-198,共5页
Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomen... Unconventional antiferromagnetism dubbed as altermagnetism was first discovered in rutile structured magnets,which is featured by spin splitting even without the spin–orbital coupling effect.This interesting phenomenon has been discovered in more altermagnetic materials.In this work,we explore two-dimensional altermagnetic materials by studying two series of two-dimensional magnets,including MF4 with M covering all 3d and 4d transition metal elements,as well as TS2 with T=V,Cr,Mn,Fe.Through the magnetic symmetry operation of RuF4 and MnS2,it is verified that breaking the time inversion is a necessary condition for spin splitting.Based on symmetry analysis and first-principles calculations,we find that the electronic bands and magnon dispersion experience alternating spin splitting along the same path.This work paves the way for exploring altermagnetism in two-dimensional materials. 展开更多
关键词 two-dimensional altermagnetic materials altermagnetism spin splitting first-principles calculations
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部