期刊文献+
共找到11,116篇文章
< 1 2 250 >
每页显示 20 50 100
From single to combinatorial therapies in spinal cord injuries for structural and functional restoration
1
作者 Ernesto Doncel-Pérez Gabriel Guízar-Sahagún Israel Grijalva-Otero 《Neural Regeneration Research》 SCIE CAS 2025年第3期660-670,共11页
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso... Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord. 展开更多
关键词 neural regeneration NEUROPROTECTION spinal cord injury repair spinal cord injury treatments structural restoration of spinal cord injury
下载PDF
Epidemiological characteristics of traumatic spinal cord injuries in the intensive care unit from 2018 to 2023:a retrospective hospital-based study
2
作者 Weiting Chen Haopeng Wu +2 位作者 Jiafei Yu Lanxing Cao Gensheng Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第6期455-464,共10页
BACKGROUND:The objective of this retrospective hospital-based study was to describe the epidemiological features of traumatic spinal cord injury(TSCI)in the intensive care unit(ICU)and assess the incidence and possibl... BACKGROUND:The objective of this retrospective hospital-based study was to describe the epidemiological features of traumatic spinal cord injury(TSCI)in the intensive care unit(ICU)and assess the incidence and possible risk factors for venous thromboembolism(VTE)following TSCI.METHODS:We retrospectively reviewed the medical records of 370 patients with TSCI who were admitted between January 2018 and March 2023.The following parameters were collected:age,sex,body mass index,occupation,underlying diseases,smoking history,education level,etiology of injury,injury segments,American Spinal Injury Association(ASIA)Impairment Scale score,severity of injury,injury severity score(ISS),VTE risk score(Caprini score),treatment,VTE prophylaxis,ICU length of stay,length of hospital stay,concomitant injuries,and complications.Descriptive statistics were used to summarize the demographic and clinical characteristics of the study participants.Logistic regression analysis was used to determine the risk factors for VTE.RESULTS:The mean age of patients with TSCI was 55.5±13.4 years,with a male-to-female ratio of 6.5:1.The leading cause of TSCI was falls from height(46.5%),followed by traffic accidents(36.5%).The cervical spinal cord was the most affected segment,followed by the thoracolumbar region.Among all the patients,362(97.8%)had concomitant injuries.Complications were observed in 255 patients(68.9%)during hospitalization.The incidence rate of VTE was 25.1%.Logistic regression analysis revealed that age(OR=1.721,95%CI:1.207-2.454,P=0.003),mechanical ventilation(OR=3.427,95%CI:1.873-6.271,P<0.001),and non-use of chemical prophylaxis(OR=2.986,95%CI:1.749-5.099,P<0.001)were risk factors for VTE.CONCLUSION:Falls from height and traffic accidents were the main causes of TSCIs in the ICU,especially for male patients with cervical spinal cord injuries.VTE is a frequent complication in patients with TSCI in the ICU.Age,mechanical ventilation,and non-use of chemical prophylaxis were found to be independent risk factors for VTE following TSCI. 展开更多
关键词 Traumatic spinal cord injury EPIDEMIOLOGY Venous thromboembolism Intensive care unit
下载PDF
Decision-Making and Management of Self-Care in Persons with Traumatic Spinal Cord Injuries: A Preliminary Study
3
作者 Paul E. Plonski Jasmin Vassileva +5 位作者 Ryan Shahidi Paul B. Perrin William Carter Lance L. Goetz Amber Brochetti James M. Bjork 《Journal of Behavioral and Brain Science》 2024年第2期47-63,共17页
Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobeha... Patients and physicians understand the importance of self-care following spinal cord injury (SCI), yet many individuals with SCI do not adhere to recommended self-care activities despite logistical supports. Neurobehavioral determinants of SCI self-care behavior, such as impulsivity, are not widely studied, yet understanding them could inform efforts to improve SCI self-care. We explored associations between impulsivity and self-care in an observational study of 35 US adults age 18 - 50 who had traumatic SCI with paraplegia at least six months before assessment. The primary outcome measure was self-reported self-care. In LASSO regression models that included all neurobehavioral measures and demographics as predictors of self-care, dispositional measures of greater impulsivity (negative urgency, lack of premeditation, lack of perseverance), and reduced mindfulness were associated with reduced self-care. Outcome (magnitude) sensitivity, a latent decision-making parameter derived from computationally modeling successive choices in a gambling task, was also associated with self-care behavior. These results are preliminary;more research is needed to demonstrate the utility of these findings in clinical settings. Information about associations between impulsivity and poor self-care in people with SCI could guide the development of interventions to improve SCI self-care and help patients with elevated risks related to self-care and secondary health conditions. 展开更多
关键词 spinal cord Injury SELF-CARE DECISION-MAKING PARAPLEGIA Impulsive Behavior Health Care
下载PDF
Complement-dependent neuroinflammation in spinal cord injury:from pathology to therapeutic implications
4
作者 Hassan Saad Bachar El Baba +10 位作者 Ali Tfaily Firas Kobeissy Juanmarco Gutierrez Gonzalez Daniel Refai Gerald R.Rodts Christian Mustroph David Gimbel Jonathan Grossberg Daniel L.Barrow Matthew F.Gary Ali M.Alawieh 《Neural Regeneration Research》 SCIE CAS 2025年第5期1324-1335,共12页
Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery... Spinal cord injury remains a major cause of disability in young adults,and beyond acute decompression and rehabilitation,there are no pharmacological treatments to limit the progression of injury and optimize recovery in this population.Following the thorough investigation of the complement system in triggering and propagating cerebral neuroinflammation,a similar role for complement in spinal neuroinflammation is a focus of ongoing research.In this work,we survey the current literature investigating the role of complement in spinal cord injury including the sources of complement proteins,triggers of complement activation,and role of effector functions in the pathology.We study relevant data demonstrating the different triggers of complement activation after spinal cord injury including direct binding to cellular debris,and or activation via antibody binding to damage-associated molecular patterns.Several effector functions of complement have been implicated in spinal cord injury,and we critically evaluate recent studies on the dual role of complement anaphylatoxins in spinal cord injury while emphasizing the lack of pathophysiological understanding of the role of opsonins in spinal cord injury.Following this pathophysiological review,we systematically review the different translational approaches used in preclinical models of spinal cord injury and discuss the challenges for future translation into human subjects.This review emphasizes the need for future studies to dissect the roles of different complement pathways in the pathology of spinal cord injury,to evaluate the phases of involvement of opsonins and anaphylatoxins,and to study the role of complement in white matter degeneration and regeneration using translational strategies to supplement genetic models. 展开更多
关键词 COMPLEMENT NEUROINFLAMMATION NEUROPLASTICITY regeneration spinal cord injury targeted therapy
下载PDF
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
5
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING BIOMATERIALS cell therapy humans non-human primates spinal cord injury stem cell therapy
下载PDF
Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury
6
作者 Wenrui Qu Xiangbing Wu +13 位作者 Wei Wu Ying Wang Yan Sun Lingxiao Deng Melissa Walker Chen Chen Heqiao Dai Qi Han Ying Ding Yongzhi Xia George Smith Rui Li Nai-Kui Liu Xiao-Ming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1467-1482,共16页
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration... Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury. 展开更多
关键词 axonal regrowth bladder function chondroitinase ABC functional recovery glial scar LENTIVIRUS migration Schwann cell spinal cord injury TRAnsPLANTATION
下载PDF
The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury
7
作者 Jennifer M.Colón-Mercado Aranza I.Torrado-Tapias +5 位作者 Iris K.Salgado Jose M.Santiago Samuel E.Ocasio Rivera Dina P.Bracho-Rincon Luis H.Pagan Rivera Jorge D.Miranda 《Neural Regeneration Research》 SCIE CAS 2025年第11期3317-3329,共13页
In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epice... In addition to the loss of motor function,~60% of patients develop pain after spinal cord injury.The cellular-molecular mechanisms are not well understood,but the data suggests that plasticity within the rostral,epicenter,and caudal penumbra of the injury site initiates a cellularmolecular interplay that acts as a rewiring mechanism leading to central neuropathic pain.Sprouting can lead to the formation of new connections triggering abnormal sensory transmission.The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity.Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen.In this study,we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury.We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters,leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting.Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control(placebo).We used von Frey monofilaments and the“up-down method”to evaluate mechanical allodynia.Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sexdependent effect.The expression profile of glutamatergic transporters(excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1)revealed a sexual dimorphism in the rostral,epicenter,and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes.Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents.Analyses of peptidergic(calcitonin gene-related peptide-α)and non-peptidergic(isolectin B4)fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/isolectin B4 ratio in comparison with sham,suggesting increased receptive fields in the dorsal horn.Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats,this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury.Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord.The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain,an area with a critical need for treatment. 展开更多
关键词 ALLODYNIA central neuropathic pain EAAT-1/GLAST EAAT-2/GLT-1 glutamate transporters selective estrogen receptor modulator sexual dimorphism spinal cord injury TRAUMA
下载PDF
Nerve root magnetic stimulation regulates the synaptic plasticity of injured spinal cord by ascending sensory pathway
8
作者 Ya Zheng Lingyun Cao +7 位作者 Dan Zhao Qi Yang Chunya Gu Yeran Mao Guangyue Zhu Yulian Zhu Jing Zhao Dongsheng Xu 《Neural Regeneration Research》 2025年第12期3564-3573,共10页
Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting th... Promoting synaptic plasticity and inducing functional reorganization of residual nerve fibers hold clinical significance for restoring motor function following spinal cord injury.Neuromagnetic stimulation targeting the nerve roots has been shown to improve motor function by enhancing nerve conduction in the injured spinal cord and restoring the synaptic ultrastructure of both the sensory and motor cortex.However,our understanding of the neurophysiological mechanisms by which nerve root magnetic stimulation facilitates motor function recovery in the spinal cord is limited,and its role in neuroplasticity remains unclear.In this study,we established a model of spinal cord injury in adult male Sprague–Dawley rats by applying moderate compression at the T10 vertebra.We then performed magnetic stimulation on the L5 nerve root for 3 weeks,beginning on day 3 post-injury.At day 22 post-injury,we observed that nerve root magnetic stimulation downregulated the level of interleukin-6 in the injured spinal cord tissue of rats.Additionally,this treatment reduced neuronal damage and glial scar formation,and increased the number of neurons in the injured spinal cord.Furthermore,nerve root magnetic stimulation decreased the levels of acetylcholine,norepinephrine,and dopamine,and increased the expression of synaptic plasticity-related m RNA and proteins PSD95,GAP43,and Synapsin II.Taken together,these results showed that nerve root magnetic stimulation alleviated neuronal damage in the injured spinal cord,regulated synaptic plasticity,and suppressed inflammatory responses.These findings provide laboratory evidence for the clinical application of nerve root magnetic stimulation in the treatment of spinal cord injury. 展开更多
关键词 DENDRITE inflammation magnetic stimulation nerve root neurological function neuronal damage NEUROTRAnsMITTER spinal cord injury synaptic plasticity synaptic transmission
下载PDF
Acute complications of spinal cord injuries 被引量:19
9
作者 Ellen Merete Hagen 《World Journal of Orthopedics》 2015年第1期17-23,共7页
The aim of this paper is to give an overview of acute complications of spinal cord injury(SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system... The aim of this paper is to give an overview of acute complications of spinal cord injury(SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperaturecontrol and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. 展开更多
关键词 spinal cord injuries AUTONOMIC dysreflexia Cardiovascular disease ORTHOSTATIC HYPOTEnsION BRADYCARDIA THROMBOEMBOLISM Respiratory InsUFFICIENCY
下载PDF
Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries:a meta-analysis 被引量:5
10
作者 Kai Qian Tuo-Ye Xu +7 位作者 Xi Wang Tao Ma Kai-Xin Zhang Kun Yang Teng-Da Qian Jing Shi Li-Xin Li Zheng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期748-758,共11页
Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically re... Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically relevant,standardized rat model of contusion SCI were identified by searching the PubMed,Embase and Cochrane databases,and the extracted data were analyzed by Stata 14.0.Data selection:Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso,Beattie,and Bresnahan lo-comotor rating scale.Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups.Outcome measures:The restoration of motor function was assessed by the Basso,Beattie,and Bresnahan locomotor rating scale.Results:We identified 1756 non-duplicated papers by searching the aforementioned electronic databases,and 30 full-text articles met the inclusion criteria.A total of 37 studies reported in the 30 articles were included in the meta-analysis.The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs,to a moderate extent(pooled standardized mean difference(SMD)=0.73;95%confidence interval(CI):0.47–1.00;P<0.001).NSCs obtained from different donor species(rat:SMD=0.74;95%CI:0.36–1.13;human:SMD=0.78;95%CI:0.31–1.25),at different donor ages(fetal:SMD=0.67;95%CI:0.43–0.92;adult:SMD=0.86;95%CI:0.50–1.22)and from different origins(brain-derived:SMD=0.59;95%CI:0.27–0.91;spinal cord-derived:SMD=0.51;95%CI:0.22–0.79)had similar efficacies on improved functional recovery;however,adult induced pluripotent stem cell-derived NSCs showed no significant efficacies.Furthermore,the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery(SMD=0.45;95%CI:0.21–0.70).However,shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies(acute:SMD=1.22;95%CI:0.81–1.63;subacute:SMD=0.75;95%CI:0.42–1.09).For chronic injuries,NSC implantation did not significantly improve functional recovery(SMD=0.25;95%CI:–0.16 to 0.65).Conclusion:NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs. 展开更多
关键词 Basso Beattie and Bresnahan locomotor rating scale CELL TRAnsPLANTATION META-ANALYSIS motor functional recovery NEURAL regeneration NEURAL stem CELL NEURAL stem CELL TRAnsPLANTATION rat model spinal CONTUSION spinal cord injury
下载PDF
Stem cells for spinal cord injuries bearing translational potential 被引量:3
11
作者 Kyriakos Dalamagkas Magdalini Tsintou Alexander M.Seifalian 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期35-42,共8页
Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nan... Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nanotechnology and regenerative medicine strategies holding promise for the development of novel therapies that would reach from bench to bedside to serve the SCI patients. There has already been significant progress in the field of cell-based therapies, with the clinical application for SCI, currently in phase II of the clinical trial. Stem cells (e.g., induced pluripotent stem cells, fetal stem cells, human embryonic stem cells, and olfactory ensheathing cells) are certainly not to be considered the panacea for neural repair but, especially when combined with rehabilitation or other combinatorial approaches using the help of nanotechnology, they seem to be the source of some of the most promising and clinical translatable cell-based therapies that could help solving impactful problems on neural repair. 展开更多
关键词 spinal cord injury stem cells NEUROREGENERATION PLASTICITY REPAIR
下载PDF
New insight into curcumin-based therapy in spinal cord injuries: CISD2 regulation 被引量:1
12
作者 Chai-Ching Lin Muh-Shi Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期222-223,共2页
Multiple protective effects of curcumin in cases of spinal cord injuries(SCIs):Curcumin[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione]is a nonsteroidal,naturally occurring compound commonly utilized... Multiple protective effects of curcumin in cases of spinal cord injuries(SCIs):Curcumin[1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione]is a nonsteroidal,naturally occurring compound commonly utilized as a dietary pigment as well as a spice in India.It is obtained from curcuma longa in. 展开更多
关键词 CISD2 regulation SCI New insight into curcumin-based therapy in spinal cord injuries
下载PDF
Spinal Cord Injuries without Visible Bone Lesions: Analysis of Four Consecutive Cases
13
作者 Magatte Gaye Sarah Ntshindj Mutomb +6 位作者 Amadou Ndiasse Kasse N’famara Sylla Sagar Diop Alvin Nah Doe Aboubacar Sidiki Sangharé Mouhamadou Habib Sy Youssoupha Sakho 《Open Journal of Orthopedics》 2018年第3期95-101,共7页
Objectives: Interest of this study is to report four cases of spinal cord injuries without bone lesion. Evolution of the injured patients according to the initial clinic assessment at admission and the treatment perfo... Objectives: Interest of this study is to report four cases of spinal cord injuries without bone lesion. Evolution of the injured patients according to the initial clinic assessment at admission and the treatment performed are discussed. Materials and Methods: From January to December 2016, we performed a retrospective study at the Neurosurgery Department of Hospital General Grand Yoff of Dakar. Four patients were followed for spinal cord injury without visible bone lesions. We analyzed the clinical, radiological, therapeutic and evolutionary data. Trauma caused by stabbing was excluded. Results: In a year, 83 cases of spinal trauma with neurological deficit were hospitalized in the department. Among them, 4 had spinal cord injuries without visible bone lesions. The average age was 31.7 years with extremes ranging from 14 to 47 years. The sex ratio of male/female was 3. We have recorded 2 cases of road traffic accidents, 1 case of fall from height and 1 case of sports accident. On the neurological level, we found 3 cases of tetraplegia, and 1 brachial monoplegia. Computed tomography in all patients was normal. All of them benefited from magnetic resonance imaging that showed spinal cord injury. All patients were under conservative treatment. One patient fully recovered, two partially and one passed away. Conclusion: In presence of any post traumatic myelopathy case, the absence of disco-vertebral lesions should bring to mind the SCIWORA as well as indicate the realization of magnetic resonance imaging. 展开更多
关键词 spinal cord injuries TRAUMA MRI
下载PDF
Resident immune responses to spinal cord injury:role of astrocytes and microglia 被引量:6
14
作者 Sydney Brockie Cindy Zhou Michael G.Fehlings 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1678-1685,共8页
Spinal cord injury can be traumatic or non-traumatic in origin,with the latter rising in incidence and prevalence with the aging demographics of our society.Moreove r,as the global population ages,individuals with co-... Spinal cord injury can be traumatic or non-traumatic in origin,with the latter rising in incidence and prevalence with the aging demographics of our society.Moreove r,as the global population ages,individuals with co-existent degenerative spinal pathology comprise a growing number of traumatic spinal cord injury cases,especially involving the cervical spinal cord.This makes recovery and treatment approaches particula rly challenging as age and comorbidities may limit regenerative capacity.For these reasons,it is critical to better understand the complex milieu of spinal cord injury lesion pathobiology and the ensuing inflammatory response.This review discusses microglia-specific purinergic and cytokine signaling pathways,as well as microglial modulation of synaptic stability and plasticity after injury.Further,we evaluate the role of astrocytes in neurotransmission and calcium signaling,as well as their border-forming response to neural lesions.Both the inflammatory and reparative roles of these cells have eluded our complete understanding and remain key therapeutic targets due to their extensive structural and functional roles in the nervous system.Recent advances have shed light on the roles of glia in neurotransmission and reparative injury responses that will change how interventions are directed.Understanding key processes and existing knowledge gaps will allow future research to effectively target these cells and harness their regenerative potential. 展开更多
关键词 ASTROCYTES glial signaling MICROGLIA spinal cord injury synaptic transmission
下载PDF
Stepping up after spinal cord injury:negotiating an obstacle during walking
15
作者 Alain Frigon Charly G.Lecomte 《Neural Regeneration Research》 SCIE CAS 2025年第7期1919-1929,共11页
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso... Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent. 展开更多
关键词 BIOMECHANICS locomotion NEUROPHYSIOLOGY obstacle negotiation spinal cord injury
下载PDF
Pharmacological interventions targeting the microcirculation following traumatic spinal cord injury 被引量:3
16
作者 Rongrong Wang Jinzhu Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期35-42,共8页
Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve ... Traumatic spinal cord injury is a devastating disorder chara cterized by sensory,motor,and autonomic dysfunction that seve rely compromises an individual's ability to perform activities of daily living.These adve rse outcomes are closely related to the complex mechanism of spinal cord injury,the limited regenerative capacity of central neurons,and the inhibitory environment fo rmed by traumatic injury.Disruption to the microcirculation is an important pathophysiological mechanism of spinal cord injury.A number of therapeutic agents have been shown to improve the injury environment,mitigate secondary damage,and/or promote regeneration and repair.Among them,the spinal cord microcirculation has become an important target for the treatment of spinal cord injury.Drug inte rventions targeting the microcirculation can improve the microenvironment and promote recovery following spinal cord injury.These drugs target the structure and function of the spinal cord microcirculation and are essential for maintaining the normal function of spinal neuro ns,axons,and glial cells.This review discusses the pathophysiological role of spinal cord microcirculation in spinal cord injury,including its structure and histopathological changes.Further,it summarizes the progress of drug therapies targeting the spinal cord mic rocirc ulation after spinal cord injury. 展开更多
关键词 blood-spinal cord barrier drug therapy MICROCIRCULATION microvascular blood flow NEUROPROTECTION pharmacological intervention PHARMACOTHERAPY spinal cord injury TRAUMA
下载PDF
Passive activity enhances residual control ability in patients with complete spinal cord injury
17
作者 Yanqing Xiao Mingming Gao +6 位作者 Zejia He Jia Zheng Hongming Bai Jia-Sheng Rao Guiyun Song Wei Song Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2337-2347,共11页
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these... Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury. 展开更多
关键词 complete spinal cord injury cycle training epidural electrical stimulation motor training passive activity physiological state spinal cord circuit surface electromyography volitional control task
下载PDF
Pharmacological intervention for chronic phase of spinal cord injury
18
作者 Chihiro Tohda 《Neural Regeneration Research》 SCIE CAS 2025年第5期1377-1389,共13页
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin... Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury. 展开更多
关键词 axonal growth chronic phase clinical study PHARMACOTHERAPY spinal cord injury
下载PDF
Metabolic reprogramming: a new option for the treatment of spinal cord injury
19
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang Ronghao Wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai Wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXOns GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
下载PDF
Combinatorial therapies for spinal cord injury repair
20
作者 Carla S.Sousa Andreia Monteiro +1 位作者 António J.Salgado Nuno A.Silva 《Neural Regeneration Research》 SCIE CAS 2025年第5期1293-1308,共16页
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed t... Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management. 展开更多
关键词 electric stimulation neural tissue regeneration NEUROPROTECTION POLYTHERAPY spinal cord injury
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部