Spine-related disorders are caused by several factors including (1) spinal nerve/visceral nerve stimulation by perivertebral aseptic inflammation, (2) spinal nerve/visceral nerve compression by injured periverterb...Spine-related disorders are caused by several factors including (1) spinal nerve/visceral nerve stimulation by perivertebral aseptic inflammation, (2) spinal nerve/visceral nerve compression by injured periverterbal soft tissue, dislocated perivertebral small joint, and proliferative/degenerative tissue and, (3) secondary damage to the spinal cord, peripheral nerve, vessels and autonomic nerve, which further stimulate nerve root sheath and surround- ing pain-carrying nerve fibers. In many cases, the source of pain cannot be detected by standard image modalities. Particularly in anatomically complex regions like the spine, SPECT/CT can be helpful for some aspects by intro- ducing a metabolical dimension to the classical way of morphology-based diagnostic. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical spine-focused setting.展开更多
Spinal cord stimulation (SCS) is a promising technique for treating disorders of consciousness (DOCs). However, differences in the spatio-temporal responsiveness of the brain under varied SCS parameters remain unc...Spinal cord stimulation (SCS) is a promising technique for treating disorders of consciousness (DOCs). However, differences in the spatio-temporal responsiveness of the brain under varied SCS parameters remain unclear. In this pilot study, functional near-infrared spectroscopy was used to measure the hemodynamic responses of 10 DOC patients to different SCS frequencies (5 Hz, 10 Hz, 50 Hz, 70 Hz, and 100 Hz). In the prefrontal cortex, a key area in consciousness circuits, we found significantly increased hemodynamic responses at 70 Hz and 100 Hz, and significantly different hemodynamic responses between 50 Hz and 70 Hz/100 Hz. In addition, the functional connectivity between prefrontal and occipital areas was significantly improved with SCS at 70 Hz. These results demonstrated that SCS modulates the hemodynamic responses and long-range connectivity in a frequency-specific manner (with 70 Hz apparently better), perhaps by improving the cerebral blood volume and information transmission through the reticular formation-thalamus-cortex pathway.展开更多
文摘Spine-related disorders are caused by several factors including (1) spinal nerve/visceral nerve stimulation by perivertebral aseptic inflammation, (2) spinal nerve/visceral nerve compression by injured periverterbal soft tissue, dislocated perivertebral small joint, and proliferative/degenerative tissue and, (3) secondary damage to the spinal cord, peripheral nerve, vessels and autonomic nerve, which further stimulate nerve root sheath and surround- ing pain-carrying nerve fibers. In many cases, the source of pain cannot be detected by standard image modalities. Particularly in anatomically complex regions like the spine, SPECT/CT can be helpful for some aspects by intro- ducing a metabolical dimension to the classical way of morphology-based diagnostic. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical spine-focused setting.
基金supported by the National Key Research and Development Program of China (2017YFB1002502)the National Natural Science Foundation of China (81501550, 81600919, and 31771076)+5 种基金the Cross Training (Shipei) Project of High-Caliber Talents in Beijing Municipal Institutions (2017–2018)the Supplementary and Supportive Project for Teachers at Beijing Information Science and Technology University (2018–2020, 5029011103)the School Scientific Research Project at Beijing Information Science and Technology University (1825010) the Beijing Municipal Science and Technology Commission (Z161100000516165) the Shenzhen Peacock Plan (KQTD2015033016104926)the Guangdong Pearl River Talents Plan Innovative and Entrepreneurial Team grant (2016ZT06S220)
文摘Spinal cord stimulation (SCS) is a promising technique for treating disorders of consciousness (DOCs). However, differences in the spatio-temporal responsiveness of the brain under varied SCS parameters remain unclear. In this pilot study, functional near-infrared spectroscopy was used to measure the hemodynamic responses of 10 DOC patients to different SCS frequencies (5 Hz, 10 Hz, 50 Hz, 70 Hz, and 100 Hz). In the prefrontal cortex, a key area in consciousness circuits, we found significantly increased hemodynamic responses at 70 Hz and 100 Hz, and significantly different hemodynamic responses between 50 Hz and 70 Hz/100 Hz. In addition, the functional connectivity between prefrontal and occipital areas was significantly improved with SCS at 70 Hz. These results demonstrated that SCS modulates the hemodynamic responses and long-range connectivity in a frequency-specific manner (with 70 Hz apparently better), perhaps by improving the cerebral blood volume and information transmission through the reticular formation-thalamus-cortex pathway.