期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia 被引量:8
1
作者 Dong Wang Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期749-755,共7页
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein whi... Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury. 展开更多
关键词 bone marrow mesenchymal stem cells electrophysiological function HYPOTHERMIA spinal cord hemisection injury TRANSPLANTATION
下载PDF
Different frequencies of electroacupuncture and semen coicis decrease glial fibrillary acidic protein expression in rats with hemisection spinal cord injury
2
作者 Chunguang Hou Zhongzheng Li +4 位作者 Yi Guo Yongming Guo Yangyang Liu Chao Wang Ishida Torao 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第24期1870-1875,共6页
This study established the following groups of rats: a normal group, a sham surgery group, a spinal cord injury model group, a low-frequency electroacupuncture group, a high-frequency electroacupuncture group and a s... This study established the following groups of rats: a normal group, a sham surgery group, a spinal cord injury model group, a low-frequency electroacupuncture group, a high-frequency electroacupuncture group and a semen coicis group. In all but the normal and sham surgery groups the left half of Tlo was transected. Four hours after model induction, 5-Hz and 100-Hz electroacupuncture were used to stimulate the acupoints I-luantiao (GB 30), Zusan/i (ST 36), Zhiyan9 (DU 9) and Xuanshu (DU 5), or crude extract from semen coicis was intraperitoneally injected, for 8 consecutive weeks. The results indicated that electroacupuncture stimulation and intraperitoneal injection of semen coicis improved the morphology of spinal cord tissue, promoted the recovery of motion-evoked potentials, suppressed glial fibrillary acidic protein expression, and ameliorated motor function in rats with hemisection spinal cord injury. The effects of high-frequency (100 Hz) electroacupuncture ancl semen coicis were significant. 展开更多
关键词 ELECTROACUPUNCTURE semen coicis hemisection spinal cord injury traditional Chinese medicine neural regeneration
下载PDF
Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation 被引量:7
3
作者 Feng Xue Er-jun Wu +4 位作者 Pei-xun Zhang Li-ya A Yu-hui Kou Xiao-feng Yin Na Han 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第1期104-111,共8页
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staini... We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. 展开更多
关键词 nerve regeneration spinal cord injury spinal cord hemisection biological conduit bonemarrow mesenchymal stem cells stem cells transmission electron microscope cell transplantation neurons nerve fibers NSFC grants neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部