期刊文献+
共找到189篇文章
< 1 2 10 >
每页显示 20 50 100
Regenerative medicine strategies for chronic complete spinal cord injury
1
作者 Shogo Hashimoto Narihito Nagoshi +1 位作者 Masaya Nakamura Hideyuki Okano 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期818-824,共7页
Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases.While rapid progress has been made in regenerative medicine for spinal cord injury that was previou... Spinal cord injury is a condition in which the parenchyma of the spinal cord is damaged by trauma or various diseases.While rapid progress has been made in regenerative medicine for spinal cord injury that was previously untreatable,most research in this field has focused on the early phase of incomplete injury.However,the majority of patients have chronic severe injuries;therefore,treatments for these situations are of fundamental importance.The reason why the treatment of complete spinal cord injury has not been studied is that,unlike in the early stage of incomplete spinal cord injury,there are various inhibitors of neural regeneration.Thus,we assumed that it is difficult to address all conditions with a single treatment in chronic complete spinal cord injury and that a combination of several treatments is essential to target severe pathologies.First,we established a combination therapy of cell transplantation and drug-releasing scaffolds,which contributes to functional recovery after chronic complete transection spinal cord injury,but we found that functional recovery was limited and still needs further investigation.Here,for the further development of the treatment of chronic complete spinal cord injury,we review the necessary approaches to the different pathologies based on our findings and the many studies that have been accumulated to date and discuss,with reference to the literature,which combination of treatments is most effective in achieving functional recovery. 展开更多
关键词 cell transplantation chronic phase complete transection regenerative medicine spinal cord injury
下载PDF
Pharmacological intervention for chronic phase of spinal cord injury
2
作者 Chihiro Tohda 《Neural Regeneration Research》 SCIE CAS 2025年第5期1377-1389,共13页
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin... Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury. 展开更多
关键词 axonal growth chronic phase clinical study PHARMACOTHERAPY spinal cord injury
下载PDF
Surgical intervention combined with weight-bearing walking training promotes recovery in patients with chronic spinal cord injury:a randomized controlled study
3
作者 Hui Zhu James D.Guest +19 位作者 Sarah Dunlop Jia-Xin Xie Sujuan Gao Zhuojing Luo Joe E.Springer Wutian Wu Wise Young Wai Sang Poon Song Liu Hongkun Gao Tao Yu Dianchun Wang Libing Zhou Shengping Wu Lei Zhong Fang Niu Xiaomei Wang Yansheng Liu Kwok-Fai So Xiao-Ming Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2773-2784,共12页
For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein th... For patients with chronic spinal cord injury,the co nventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection,pressure sores,osteoporosis,and deep vein thrombosis.Surgery is rarely perfo rmed on spinal co rd injury in the chronic phase,and few treatments have been proven effective in chronic spinal cord injury patients.Development of effective therapies fo r chronic spinal co rd injury patients is needed.We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal co rd injury to compare intensive rehabilitation(weight-bearing walking training)alone with surgical intervention plus intensive rehabilitation.This clinical trial was registered at ClinicalTrials.gov(NCT02663310).The goal of surgical intervention was spinal cord detethering,restoration of cerebrospinal fluid flow,and elimination of residual spinal cord compression.We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement,reduced spasticity,and more rapid bowel and bladder functional recovery than weight-bearing walking training alone.Overall,the surgical procedures and intensive rehabilitation were safe.American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries.Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients. 展开更多
关键词 chronic spinal cord injury intensive rehabilitation locomotor training neurological recovery surgical intervention weightbearing walking training
下载PDF
The ferroptosis activity is associated with neurological recovery following chronic compressive spinal cord injury 被引量:1
4
作者 Zhengran Yu Xing Cheng +2 位作者 Wenxu Pan Cheng Yu Yang Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2482-2488,共7页
Chronic compressive spinal cord injury in compressive cervical myelopathy conditions can lead to rapid neurological deterioration in the early phase,followed by partial self-recovery,and ultimately an equilibrium stat... Chronic compressive spinal cord injury in compressive cervical myelopathy conditions can lead to rapid neurological deterioration in the early phase,followed by partial self-recovery,and ultimately an equilibrium state of neurological dysfunction.Ferroptosis is a crucial pathological process in many neurodegenerative diseases;however,its role in chro nic compressive spinal cord injury remains unclear.In this study,we established a chronic compressive spinal cord injury rat model,which displayed its most severe behavioral and electrophysiological dysfunction at 4 wee ks and partial recovery at 8 weeks after compression.Bulk RNA sequencing data identified enriched functional pathways,including ferroptosis,presynapse,and postsynaptic membrane activity at both 4 and 8 wee ks following chro nic compressive spinal co rd injury.Tra nsmission electron microscopy and malondialdehyde quantification assay confirmed that ferroptosis activity peaked at 4 weeks and was attenuated at 8 weeks after chronic compression.Ferro ptosis activity was negatively correlated with behavioral score.Immunofluorescence,quantitative polymerase chain reaction,and western blotting showed that expression of the anti-ferroptosis molecules,glutathione peroxidase 4(GPX4) and MAF BZIP transcription factor G(MafG),in neuro ns was suppressed at 4 weeks and upregulated at 8 weeks following spinal co rd compression.There was a positive correlation between the expression of these two molecules,suggesting that they may work together to contribute to functional recovery following chronic compressive spinal cord injury.In conclusion,our study determined the genome-wide expression profile and fe rroptosis activity of a consistently compressed spinal cord at different time points.The results showed that anti-fe rroptosis genes,specifically GPX4 and MafG,may be involved in spontaneous neurological recovery at 8 weeks of chronic compressive spinal cord injury.These findings contribute to a better understanding of the mechanisms underlying chronic compressive spinal cord injury and may help identify new therapeutic targets for compressive cervical myelopathy. 展开更多
关键词 chronic spinal cord compression compressive cervical myelopathy ferroptosis genome-wide transcriptome glutathione peroxidase 4(GPX4) MAF BZIP transcription factor G(MafG) neurological function
下载PDF
Human umbilical cord mesenchymal stem cells to treat spinal cord injury in the early chronic phase: study protocol for a prospective, multicenter, randomized, placebo-controlled, single-blinded clinical trial 被引量:9
5
作者 Yang Yang Mao Pang +5 位作者 Yu-Yong Chen Liang-Ming Zhang Hao Liu Jun Tan Bin Liu Li-Min Rong 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第8期1532-1538,共7页
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promisin... Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019. 展开更多
关键词 clinical study early chronic phase efficacy human umbilical cord mesenchymal stem cell multicenter trial prospective study randomized controlled trial safety spinal cord injury study protocol
下载PDF
The prospects of regenerative medicine combined with rehabilitative approaches for chronic spinal cord injury animal models 被引量:4
6
作者 Syoichi Tashiro Masaya Nakamura Hideyuki Okano 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期43-46,共4页
Regenerative medicine has opened a window for functional recovery in acute-to-subacute phase spinal cord injury(SCI).By contrast,there are still only a few studies have focused on the treatment of the chronically in... Regenerative medicine has opened a window for functional recovery in acute-to-subacute phase spinal cord injury(SCI).By contrast,there are still only a few studies have focused on the treatment of the chronically injured spinal cord,in which cell-based regenerative medicine seems less effective.Since the majority of SCI patients are in the chronic phase,representing a major challenge for the clinical application of cellbased regenerative medicine.Although combined therapies for the treatment of chronic SCI have attracted attention of researchers and its potential importance is also widely recognized,there had been very few studies involving rehabilitative treatments to date.In a recent study,we have demonstrated for the first time that treadmill training combined with cell transplantation significantly promotes functional recovery even in chronic SCI,not only in additive but also in synergistic manner.Even though we have succeeded to outline the profiles of recovery secondary to the combination therapy,the mechanism underlying the effects remain unsolved.In this review article,we summarize the present progress and consider the prospect of the cell-based regenerative medicine particularly combined with rehabilitative approaches for chronic SCI animal models. 展开更多
关键词 transplantation spinal cord injury regenerative medicine chronic phase rehabilitation treadmill training
下载PDF
Future directions for using estrogen receptor agonists in the treatment of acute and chronic spinal cord injury 被引量:1
7
作者 Swapan K. Ray Supriti Samntaray Naren L. Banik 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1418-1419,共2页
All synthetic and natural estrogen receptor agonists, in- cluding the most potent physiological molecule estrogen or estradiol (E2), work typically via activation of nuclear estrogen receptor alpha (ERα) and estr... All synthetic and natural estrogen receptor agonists, in- cluding the most potent physiological molecule estrogen or estradiol (E2), work typically via activation of nuclear estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Both ERα and ERβ modulate the expression of a variety of genes in the cells. Neurons and glial cells express ERa and ERβ. Many studies so far from our and other laboratories have firmly established the mode of actions that ERα and ERβ agonists are very promising anti-inflammatory and neuroprotective agents in the treatment of neurodegenera- rive diseases and injuries including spinal cord injury (SCI) (Chakrabarti et al., 2014a). 展开更多
关键词 Future directions for using estrogen receptor agonists in the treatment of acute and chronic spinal cord injury SCI
下载PDF
A progressive compression model of thoracic spinal cord injury in mice: function assessment and pathological changes in spinal cord 被引量:3
8
作者 Guo-dong Sun Yan Chen +3 位作者 Zhi-gang Zhou Shu-xian Yang Cheng Zhong Zhi-zhong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第8期1365-1374,共10页
Non-traumatic injury accounts for approximately half of clinical spinal cord injury, including chronic spinal cord compression. However, previous rodent spinal cord compression models are mainly designed for rats, few... Non-traumatic injury accounts for approximately half of clinical spinal cord injury, including chronic spinal cord compression. However, previous rodent spinal cord compression models are mainly designed for rats, few are available for mice. Our aim is to develop a thoracic progressive compression mice model of spinal cord injury. In this study, adult wild-type C57BL/6 mice were divided into two groups: in the surgery group, a screw was inserted at T9 lamina to compress the spinal cord, and the compression was increased by turning it further into the canal(0.2 mm) post-surgery every 2 weeks up to 8 weeks. In the control group, a hole was drilled into the lamina without inserting a screw. The results showed that Basso Mouse Scale scores were lower and gait worsened. In addition, the degree of hindlimb dysfunction in mice was consistent with the degree of spinal cord compression. The number of motor neurons in the anterior horn of the spinal cord was reduced in all groups of mice, whereas astrocytes and microglia were gradually activated and proliferated. In conclusion, this progressive compression of thoracic spinal cord injury in mice is a preferable model for chronic progressive spinal cord compression injury. 展开更多
关键词 nerve regeneration progressive spinal cord compression injury pathological changes Basso Mouse Scale scores gait motor evokedpotentials ASTROCYTES MICROGLIA motor neurons hindlimb dysfunction neural regeneration
下载PDF
Time-to-enrollment in clinical trials investigating neurological recovery in chronic spinal cord injury:observations from a systematic review and Clinical Trials.gov database 被引量:1
9
作者 F M Moinuddin Yagiz Ugur Yolcu +5 位作者 Waseem Wahood Jad Zreik Sandy Goncalves Anthony John Windebank Wenchun Qu Mohamad Bydon 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第5期953-958,共6页
Currently,large numbers of clinical trials are performed to investigate different forms of experimental therapy for patients suffering from chronic spinal cord injury(SCI).However,for the enrollment process,there are ... Currently,large numbers of clinical trials are performed to investigate different forms of experimental therapy for patients suffering from chronic spinal cord injury(SCI).However,for the enrollment process,there are different views on how the time period between injury and interventions should be determined.Herein,we sought to evaluate the impact of time-to-enrollment in chronic SCI clinical trials.A data set comprising 957 clinical studies from clinical Trials.gov was downloaded and analyzed focusing on the eligibility criteria for post-injury time-to-enrollment.We also aggregated individual patient data from nine clinical trials of regenerative interventions for chronic SCI selected by a systematic literature search from 1990 to 2018.Characteristics of the studies were assessed and compared by dividing into three groups based on time-to-enrollment(group 1≤12 months,group 2=12-23 months and group 3≥24 months).In Clinical Trials.gov registry,445 trials were identified for chronic SCI where 87%(385)were unrestricted in the maximum post-injury time for trial eligibility.From systematic literature search,nine studies and 156 patients(group 1=30,group 2=55 and group 3=71)were included.The range of time-to-enrollment was 0.5 to 321 months in those studies.We also observed various degrees of motor and sensory improvement in between three time-to-enrollment groups.Our results indicate that enrolling wide ranges of time-to-enrollment in a group may present imprecise outcomes.Clinical trial designs should consider appropriate postinjury time frames to evaluate therapeutic benefit. 展开更多
关键词 chronic clinical trial spinal cord injury systematic review time-to-enrollment
下载PDF
Skeletal muscle stiffness as measured by magnetic resonance elastography after chronic spinal cord injury:a cross-sectional pilot study 被引量:1
10
作者 Mina P.Ghatas M.Rehan Khan Ashraf S.Gorgey 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第12期2486-2493,共8页
Skeletal muscle stiffness is altered after spinal cord injury(SCI).Assessing muscle stiffness is essential for rehabilitation and pharmaceutical interventions design after SCI.The study used magnetic resonance elastog... Skeletal muscle stiffness is altered after spinal cord injury(SCI).Assessing muscle stiffness is essential for rehabilitation and pharmaceutical interventions design after SCI.The study used magnetic resonance elastography to assess the changes in stiffness after chronic SCI compared to matched able-bodied controls and determine its association with muscle size,spasticity,and peak torque in persons with SCI.Previous studies examined the association between muscle stiffness and spasticity,however,we are unaware of other studies that examined the effects of muscle composition on stiffness after SCI.Ten participants(one female)with chronic SCI and eight(one female)matched able-bodied controls participated in this cross-sectional study.Magnetic resonance elastography was utilized to monitor stiffness derived from shear waves propagation.Modified Ashworth scale was used to evaluate spasticity scores in a blinded fashion.Peak isometric and isokinetic torques were measured using a biodex dynamometer.Stiffness values were non-significantly lower(12.5%;P=0.3)in the SCI group compared to able-bodied controls.Moreover,stiffness was positively related to vastus lateralis whole muscle cross-sectional area(CSA)(r2=0.64,P<0.005)and vastus lateralis absolute muscle CSA after accounting for intramuscular fat(r2=0.78,P<0.0007).Stiffness was also positively correlated to both isometric(r2=0.55-0.57,P<0.05)and isokinetic peak(r2=0.46-0.48,P<0.05)torques.Our results suggest that larger clinical trial is warranted to confirm the preliminary findings that muscle stiffness is altered after SCI compared to healthy controls.Stiffness appeared to be influenced by infiltration of intramuscular fat and modestly by the spasticity of the paralyzed muscles.The preliminary data indicated that the relationship between muscle stiffness and peak torque is not altered with changing the frequency of pulses or angular velocities.All study procedures were approved by the Institutional Review Board at the Hunter Holmes McGuire VA Medical Center,USA(IRB#:02314)on May 3,2017. 展开更多
关键词 chronic spinal cord injury isometric and isokinetic torques magnetic resonance elastography muscle size rehabilitation shear modulus SPASTICITY STIFFNESS
下载PDF
Matrine promotes neural circuit remodeling to regulate motor function in a mouse model of chronic spinal cord injury 被引量:5
11
作者 Norio Tanabe Tomoharu Kuboyama Chihiro Tohda 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第11期1961-1967,共7页
In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully imp... In chronic phase of spinal cord injury, functional recovery is more untreatable compared with early intervention in acute phase of spinal cord injury. In the last decade, several combination therapies successfully improved motor dysfunction in chronic spinal cord injury. However, their effectiveness is not sufficient. We previously found a new effective compound for spinal cord injury, matrine, which induced axonal growth and functional recovery in acute spinal cord injury mice via direct activation of extracellular heat shock protein 90. Although our previous study clarified that matrine was an activator of extracellular heat shock protein 90, the potential of matrine for spinal cord injury in chronic phase has not been sufficiently evaluated. Thus, this study aimed to investigate whether matrine ameliorates chronic spinal cord injury in mice. Once daily intragastric administration of matrine(100 μmol/kg per day) to spinal cord injury mice were starte at 28 days after injury, and continued for 154 days. Continuous mat rine treatment improved hindlimb motor function in chronic spinal cord injury mice. In injured spinal cords of the matrine-treated mice, the density of neurofilament-H-positive axons was increased. Moreover, matrine treatment increased the density of bassoon-positive presynapses in contact with choline acetyltransferase-positive motor neurons in the lumbar spinal cord. These findings suggest that matrine promotes remodeling and reconnection of neural circuits to regulate hindlimb movement. All protocols were approved by the Committee for Animal Care and Use of the Sugitani Campus of the University of Toyama(approval No. A2013 INM-1 and A2016 INM-3) on May 7, 2013 and May 17, 2016, respectively. 展开更多
关键词 MATRINE chronic spinal cord injury axonal growth SYNAPTOGENESIS HINDLIMB LOCOMOTOR presynapse immunohistochemistry Basso MOUSE Scale Body Support Score SOPHORA flavescens
下载PDF
Potential role of hippocampal neurogenesis in spinal cord injury induced post-trauma depression
12
作者 Ying Ma Yue Qiao Xiang Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2144-2156,共13页
It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a ... It has been reported both in clinic and rodent models that beyond spinal cord injury directly induced symptoms, such as paralysis, neuropathic pain, bladder/bowel dysfunction, and loss of sexual function, there are a variety of secondary complications, including memory loss, cognitive decline, depression, and Alzheimer's disease. The largescale longitudinal population-based studies indicate that post-trauma depression is highly prevalent in spinal cord injury patients. Yet, few basic studies have been conducted to address the potential molecular mechanisms. One of possible factors underlying the depression is the reduction of adult hippocampal neurogenesis which may come from less physical activity, social isolation, chronic pain, and elevated neuroinflammation after spinal cord injury. However, there is no clear consensus yet. In this review, we will first summarize the alteration of hippocampal neurogenesis post-spinal cord injury. Then, we will discuss possible mechanisms underlie this important spinal cord injury consequence. Finally, we will outline the potential therapeutic options aimed at enhancing hippocampal neurogenesis to ameliorate depression. 展开更多
关键词 antidepressants chronic pain DEPRESSION EXERCISE hippocampal neurogenesis inflammation inhibition NEUROINFLAMMATION physical activity deficits social isolation spinal cord injury
下载PDF
Chronic spinal cord compression associated with intervertebral disc degeneration in SPARC-null mice 被引量:2
13
作者 Zhuo-Yao Li Ai-Fang Zhou +8 位作者 Gan Li Long-Yun Zhou Pei-Min Pu Ke Zhu Zhong Zheng Yong-Jun Wang Qian-Qian Liang Min Yao Xue-Jun Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期634-642,共9页
Chronic spinal cord compression(CSCC)is induced by disc herniation and other reasons,leading to movement and sensation dysfunction,with a serious impact on quality of life.Spontaneous disc herniation rarely occurs in ... Chronic spinal cord compression(CSCC)is induced by disc herniation and other reasons,leading to movement and sensation dysfunction,with a serious impact on quality of life.Spontaneous disc herniation rarely occurs in rodents,and therefore establishing a chronic spinal cord compression(CSCC)animal model is of crucial importance to explore the pathogenesis and treatment of CSCC.The absence of secreted protein,acidic,and rich in cysteine(SPARC)leads to spontaneous intervertebral disc degeneration in mice,which resembles human disc degeneration.In this study,we evaluated whether SPARC-null mice may serve as an animal model for CSCC.We performed rod rotation test,pain threshold test,gait analysis,and Basso Mouse Scale score.Our results showed that the motor function of SPARC-null mice was weakened,and magnetic resonance images revealed compression at different spinal cord levels,particularly in the lumbar segments.Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes,activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype;it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway.Notably,these findings are characteristics of CSCC.Therefore,we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation. 展开更多
关键词 apoptosis ASTROCYTES chronic spinal cord compression disc degeneration disc herniation macrophages microglia NEUROINFLAMMATION neurons NOD-like receptor protein 3 inflammasomes secreted protein acidic and rich in cysteine
下载PDF
Chronic complications of spinal cord injury 被引量:37
14
作者 Nebahat Sezer Selami Akkus Fatma Gülcin Ugurlu 《World Journal of Orthopedics》 2015年第1期24-33,共10页
Spinal cord injury(SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life... Spinal cord injury(SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life. The goals of rehabilitation and other treatment approaches in SCI are to improve functional level, decrease secondary morbidity and enhance health-relatedquality of life. Acute and long-term secondary medical complications are common in patients with SCI. However, chronic complications especially further negatively impact on patients' functional independence and quality of life. Therefore, prevention, early diagnosis and treatment of chronic secondary complications in patients with SCI is critical for limiting these complications, improving survival, community participation and health-related quality of life. The management of secondary chronic complications of SCI is also important for SCI specialists, families and caregivers as well as patients. In this paper, we review data about common secondary longterm complications after SCI, including respiratory complications, cardiovascular complications, urinary and bowel complications, spasticity, pain syndromes, pressure ulcers, osteoporosis and bone fractures. The purpose of this review is to provide an overview of risk factors, signs, symptoms, prevention and treatment approaches for secondary long-term complications in patients with SCI. 展开更多
关键词 spinal cord injury chronic complications Management of complications Long-term morbidity Secondary morbidity of spinal cord injury
下载PDF
Assessment of hindlimb motor recovery affer severe thoracic spinal cord injury in rats: classification of CatWalk XT■ gait analysis parameters 被引量:1
15
作者 Guoli Zheng Hao Zhang +6 位作者 Mohamed Tail Hao Wang Johannes Walter Thomas Skutella Andreas Unterberg Klaus Zweckberger Alexander Younsi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1084-1089,共6页
Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used an... Assessment of locomotion recovery in preclinical studies of experimental spinal cord injury remains challenging. We studied the CatWalk XT■gait analysis for evaluating hindlimb functional recovery in a widely used and clinically relevant thoracic contusion/compression spinal cord injury model in rats. Rats were randomly assigned to either a T9 spinal cord injury or sham laminectomy. Locomotion recovery was assessed using the Basso, Beattie, and Bresnahan open field rating scale and the CatWalk XT■gait analysis. To determine the potential bias from weight changes, corrected hindlimb(H) values(divided by the unaffected forelimb(F) values) were calculated. Six weeks after injury, cyst formation, astrogliosis, and the deposition of chondroitin sulfate glycosaminoglycans were assessed by immunohistochemistry staining. Compared with the baseline, a significant spontaneous recovery could be observed in the CatWalk XT■parameters max intensity, mean intensity, max intensity at%, and max contact mean intensity from 4 weeks after injury onwards. Of note, corrected values(H/F) of CatWalk XT■parameters showed a significantly less vulnerability to the weight changes than absolute values, specifically in static parameters. The corrected CatWalk XT■parameters were positively correlated with the Basso, Beattie, and Bresnahan rating scale scores, cyst formation, the immunointensity of astrogliosis and chondroitin sulfate glycosaminoglycan deposition. The CatWalk XT■gait analysis and especially its static parameters, therefore, seem to be highly useful in assessing spontaneous recovery of hindlimb function after severe thoracic spinal cord injury. Because many CatWalk XT■parameters of the hindlimbs seem to be affected by body weight changes, using their corrected values might be a valuable option to improve this dependency. 展开更多
关键词 Basso Beattie and Bresnahan rating scale behavioral assessment CatWalk XT■gait analysis contusive and compressive injury hindlimb motor function histological changes spinal cord injury spontaneous recovery THORACIC weight
下载PDF
Establishment and validation of standardized animal models of spinal cord injury by normal external force-caused fracture dislocation 被引量:6
16
作者 Weibing Shuang Qiang Liu +1 位作者 Shoubin Jiao Yang Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第35期2732-2738,共7页
The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices... The duplication of animal models plays a key role in spinal cord injury research; however, there has been limited study into normal, external force-derived fracture dislocation. This study adopted experimental devices, designed in-house, to construct standardized ventral and dorsal spinal cord injury animal models of 6 g and 17 g falling from a height of 2, 4, and 10 cm, and 15, 30 or 50 g transversal compression on the spinal cord. The results showed that gradual increases in the degree of histopathological injury led to decreased Tarlov and Basso, Beattie and Bresnahan scores for the behavioral test, and increased Ashworth scores for the hind limb. Furthermore, there was a gradual decline in the slope test in the rats with dorsal spinal cord injury that correlated to increases in the falling substance weight or falling height. Similar alterations were observed in the ventral spinal cord injured rats, proportional to the increase in compression weight. Our experimental findings indicate that the standardized experimental rat models of dorsal and ventral spinal cord injury are stable, reliable and reproducible. 展开更多
关键词 spinal cord injury spinal cord compression animal models external force fracture dislocation behavior HISTOPATHOLOGY
下载PDF
Altered leukocyte gene expression after traumatic spinal cord injury:clinical implications
17
作者 Paige E.Herman Ona Bloom 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1524-1529,共6页
In addition to changes in motor and sensory function, individuals with spinal cord injury (SCI) experience immunological changes. These changes are clinically significant, as infections are the leading cause of deat... In addition to changes in motor and sensory function, individuals with spinal cord injury (SCI) experience immunological changes. These changes are clinically significant, as infections are the leading cause of death for this population. Along with increased infections, inflammation is commonly observed in persons with SCI, where it may promote many common medical consequences. These include elevated risk of cardio- vascular disease, impaired wound healing, diabetes and neuropathic pain. It has also been proposed that chronic inflammation dampens neurological recovery. In order to identify therapeutic strategies to im- prove immune function, we need a greater understanding of the molecular changes that occur in immune cells after SCI. The purpose of this mini-review is to discuss two recent studies that used functional genom- ics to investigate gene expression in circulating leukocytes isolated from persons with SCI. In the future, the molecular pathways that are altered after SCI may be targeted to improve immunological function, as well as overall health and functional recovery, after SCI. 展开更多
关键词 traumatic spinal cord injury INFLAMMATION immune cells functional genomics gene expression AUTOIMMUNITY MICROARRAY chronic spinal cord injury
下载PDF
Ninjurin-1: a biomarker for reflecting the process of neuroinflammation after spinal cord injury 被引量:3
18
作者 Poornima D.E.Weerasinghe-Mudiyanselage Jeongtae Kim +3 位作者 Yuna Choi Changjong Moon Taekyun Shin Meejung Ahn 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1331-1335,共5页
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement... Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation.But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear.Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls.Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls.Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes.These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury.All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University(approval No.2018-0029) on July 6, 2018. 展开更多
关键词 ASTROCYTES clip compression injury macrophage MICROGLIA NEUROINFLAMMATION Ninjurin-1 rat spinal cord
下载PDF
Bee venom acupuncture reduces neuroinflammation modulating microglia/macrophage phenotype polarization in spinal cord injury compression model 被引量:1
19
作者 Raquel do Nascimento de Souza Júlia Miccolis Azevedo Lopes +5 位作者 Lívia da Rocha Natalino Monteiro Raiana Andrade Quintanilha Barbosa Gabriela Hollmann Silvana Allodi Luis Carlos Reis MagdaAlves de Medeiros 《Neuroimmunology and Neuroinflammation》 2019年第11期1-13,共13页
Aim: The present study aimed to examine whether apipuncture (stimulation of acupuncture points with bee venom)at ST36 and GV3 acupoints promotes neuroprotection and reduces neuroinflammation by modulating M1 and M2 ph... Aim: The present study aimed to examine whether apipuncture (stimulation of acupuncture points with bee venom)at ST36 and GV3 acupoints promotes neuroprotection and reduces neuroinflammation by modulating M1 and M2 phenotype polarization.Methods: Wistar rats were treated with bee venom (BV) (0.08 mg/kg) injection at acupoints ST36 and GV3 [BV (ST36 + GV3)-spinal cord injury (SCI)] or BV injection at non-acupoints [BV (NP)-SCI] or no treatment (CTL-SCI)after SCI by compression. The spinal cord mRNA expression of iNOS, Arg-1 and TGF-β was measured by real time PCR and the levels of IBA-1;BCL-2;NeuN e CNPase was measured by western blotting. Locomotor performance was measured by Basso, Beattie, and Bresnahan (BBB) and grid-walking tests.Results: Apipuncture treatment was able to (1) ameliorate locomotor performance;(2) reduce inflammatory markers (Cox-2 levels) and activation of microglia and macrophages;(3) reduce the polarization of the M1 phenotype marker (iNOS) and increase M2 (Arg-1 and TGF-β) phenotypic markers;(4) promote neuroprotection by reducing the death of neurons and oligodendrocytes;and (5) increase the expression of the anti-apoptotic factor BCL-2.Conclusion: Apipuncture treatment induces locomotor recovery and neuroprotection after the compression model of spinal cord injury. Further, it reduces neuroinflammation by decreasing M1 polarization and increasing M2 phenotype. 展开更多
关键词 ACUPUNCTURE bee venom spinal cord injury compression MICROGLIA MACROPHAGE NEUROINFLAMMATION
原文传递
One-year clinical study of NeuroR egen scaffold implantation following scar resection in complete chronic spinal cord injury patients 被引量:19
20
作者 Zhifeng Xiao Fengwu Tang +15 位作者 Jiaguang Tang Huilin Yang Yannan Zhao Bing Chen Sufang Han Nuo Wang Xing Li Shixiang Cheng Guang Han Changyu Zhao Xiaoxiong Yang Yumei Chen Qin Shi Shuxun Hou Sai Zhang Jianwu Dai 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第7期647-655,共9页
The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, Neuro Regen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemic... The objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, Neuro Regen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemical barrier that prevents neural regeneration. However, identification of scar tissue is still a major challenge. In this study, the nerve electrophysiology method was used to distinguish scar tissue from normal neural tissue, and then different lengths of scars ranging from 0.5–4.5 cm were surgically resected in five complete chronic spinal cord injury(SCI) patients. The NeuroR egen scaffold along with autologous bone marrow mononuclear cells(BMMCs), which have been proven to promote neural regeneration and SCI recovery in animal models, were transplanted into the gap in the spinal cord following scar tissue resection. No obvious adverse effects related to scar resection or Neuro Regen scaffold transplantation were observed immediately after surgery or at the 12-month follow-up. In addition, patients showed partially autonomic nervous function improvement, and the recovery of somatosensory evoked potentials(SSEP) from the lower limbs was also detected. The results indicate that scar resection and Neuro Regen scaffold transplantation could be a promising clinical approach to treating SCI. 展开更多
关键词 脊髓损伤 瘢痕 支架 患者 临床 慢性 骨髓单个核细胞 神经组织
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部