期刊文献+
共找到446篇文章
< 1 2 23 >
每页显示 20 50 100
Eph receptor A4 regulates motor neuron ferroptosis in spinal cord ischemia/reperfusion injury in rats
1
作者 Yan Dong Chunyu Ai +5 位作者 Ying Chen Zaili Zhang Dong Zhang Sidan Liu Xiangyi Tong Hong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2219-2228,共10页
Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferrop... Previous studies have shown that the receptor tyrosine kinase Eph receptor A4(EphA4) is abundantly expressed in the nervous system. The EphA4 signaling pathway plays an important role in regulating motor neuron ferroptosis in motor neuron disease. To investigate whether EphA4 signaling is involved in ferroptosis in spinal cord ischemia/reperfusion injury, in this study we established a rat model of spinal cord ischemia/reperfusion injury by clamping the left carotid artery and the left subclavian artery. We found that spinal cord ischemia/reperfusion injury increased EphA4 expression in the neurons of anterior horn, markedly worsened ferroptosis-related indicators, substantially increased the number of mitochondria exhibiting features consistent with ferroptosis, promoted deterioration of motor nerve function, increased the permeability of the blood-spinal cord barrier, and increased the rate of motor neuron death. Inhibition of EphA4 largely rescued these effects. However, intrathecal administration of the ferroptosis inducer Erastin counteracted the beneficial effects conferred by treatment with the EphA4 inhibitor. Mass spectrometry and a PubMed search were performed to identify proteins that interact with EphA4, with the most notable being Beclin1 and Erk1/2. Our results showed that inhibition of EphA4 expression reduced binding to Beclin1, markedly reduced p-Beclin1, and reduced Beclin1-XCT complex formation. Inhibition of EphA4 also reduced binding to p-Erk1/2 and markedly decreased the expression of c-Myc, transferrin receptor 1, and p-Erk1/2. Additionally, we observed co-localization of EphA4 and p-Beclin1 and of EphA4 and p-ERK1/2 in neurons in the anterior horn. In conclusion, EphA4 participates in regulating ferroptosis of spinal motor neurons in the anterior horn in spinal cord ischemia/reperfusion injury by promoting formation of the Beclin1-XCT complex and activating the Erk1/2/c-Myc/transferrin receptor 1 axis. 展开更多
关键词 BECLIN1 C-MYC EphA4 ERK1/2 ferroptosis motor neuron P-ERK1/2 RAT spinal cord ischemia/reperfusion injury transferrin receptor 1
下载PDF
Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy 被引量:16
2
作者 Fei Yin Chunyang Meng +5 位作者 Rifeng Lu Lei Li Ying Zhang Hao Chen Yonggang Qin Li Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1665-1671,共7页
Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are kno... Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans- plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as- sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur- thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro- filament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes- enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells spinal cord ischemia/reperfusioninjury axonal growth AUTOPHAGY REPAIR NSFC grant neural regeneration
下载PDF
Aldehyde dehydrogenase 2 overexpression inhibits neuronal apoptosis after spinal cord ischemia/reperfusion injury 被引量:9
3
作者 Xing-zhen Liu Xin Sun +4 位作者 Kang-ping Shen Wen-jie Jin Zhi-yi Fu Hai-rong Tao Zhi-xing Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1166-1171,共6页
Aldehyde dehydrogenase 2(ALDH2)is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury.Therefore,we hypothesized that ALDH_2 could reduce spinal ... Aldehyde dehydrogenase 2(ALDH2)is an important factor in inhibiting oxidative stress and has been shown to protect against renal ischemia/reperfusion injury.Therefore,we hypothesized that ALDH_2 could reduce spinal cord ischemia/reperfusion injury.Spinal cord ischemia/reperfusion injury was induced in rats using the modified Zivin's method of clamping the abdominal aorta.After successful model establishment,the agonist group was administered a daily consumption of 2.5%alcohol.At 7 days post-surgery,the Basso,Beattie,and Bresnahan score significantly increased in the agonist group compared with the spinal cord ischemia/reperfusion injury group.ALDH_2expression also significantly increased and the number of apoptotic cells significantly decreased in the agonist group than in the spinal cord ischemia/reperfusion injury group.Correlation analysis revealed that ALDH_2 expression negatively correlated with the percentage of TUNEL-positive cells(r=-0.485,P〈0.01).In summary,increased ALDH_2 expression protected the rat spinal cord against ischemia/reperfusion injury by inhibiting apoptosis. 展开更多
关键词 nerve regeneration spinal cord ischemia/reperfusion injury aldehyde dehydrogenase 2 ALCOHOL apoptosis oxidative stress terminaldeoxynucleotidyl transferase dUTP nick-end labeling neural regeneration
下载PDF
Protective effects of human umbilical cord mesenchymal stem cell vein transplantation against spinal cord ischemia/reperfusion injury in rats 被引量:7
4
作者 Jun Zou Minfeng Gan Xuesong Zhu Dechun Geng Huilin Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期171-177,共7页
BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilica... BACKGROUND: The majority of studies addressing spinal cord ischemia/reperfusion injury (SCIRI) have focused on drugs, proteins, cytokines, and various surgical techniques. A recent study reports that human umbilical cord mesenchymal stem cell (hUCMSC) transplantation achieves good therapeutic effects, but the mechanisms underlying nerve protection remain poorly understood. OBJECTIVE: To observe survival of transplanted hUCMSCs in SCIRI rat models and the influence on motor function in the hind limbs, to determine interleukin-8 expression and cellular apoptosis in spinal cord tissues, and to verify the hypothesis that hUCMSC transplantation exhibits protective effects on SCIRI. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Laboratory of the Department of Orthopedics in the First Affiliated Hospital of Soochow University, China between January 2007 and December 2008. MATERIALS: hUCMSCs were harvested from umbilical cord blood of healthy pregnant women after parturition in the Obstetrical Department of the First Affiliated Hospital of Soochow University, China. Rabbit anti-human BrdU monoclonal antibody was provided by DAKO, USA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Kit and enzyme-linked immunosorbent assay (ELISA) Kit were purchased by Wuhan Boster, China. METHODS: A total of 72 healthy, Wistar, adult rats were randomly assigned to three groups: sham-surgery, model, and transplantation, with 24 rats in each group. SCIRI was induced in the model and transplantation groups via the abdominal aorta block method. The infrarenal abdominal aorta was not blocked in the sham-surgery group. Prior to abdominal aorta occlusion, 0.2 03 mL bromodeoxyuridine (BrdU)-Iabeled hUCMSCs suspension (cell concentration 5 × 10 3/uL) was injected through the great saphenous vein of the hind limb, and an equal volume of physiological saline was administered to the model and sham-surgery groups. MAIN OUTCOME MEASURES: Pathological observation of rat spinal cord tissues was performed by hematoxylin-eosin staining at 6, 24, and 48 hours post-surgery. Immunohistochemistry was applied to determine hUCMSCs survival in the spinal cord. The amount of cellular apoptosis and interleukin-8 expression in spinal cord tissues was assayed utilizing the TUNEL and ELISA methods, respectively. Motor function in the hind limbs was evaluated according to Jacob's score. RESULTS: Numerous BrdU-positive cells were observed in spinal cord tissues from the transplantation group. The number of apoptotic cells and interleukin-8 levels significantly decreased in the transplantation group (P 〈 0.05), pathological injury was significantly ameliorated, and motor function scores significantly increased (P 〈 0.05) compared with the model group. CONCLUSION: Via vein transplantation, hUCMSCs were shown to reach and survive in the injury area. Results suggested that the transplanted hUCMSCs contributed to significantly improved pathological changes in the injured spinal cord, as well as motor function, following SCIRI. The protective mechanism correlated with inhibition of cellular apoptosis and reduced production of inflammatory mediators. 展开更多
关键词 human umbilical cord mesenchymal stem cells spinal cord ischemia/reperfusion injury protective effect APOPTOSIS inflammatory mediators neural regeneration
下载PDF
Stress protein expression in early phase spinal cord ischemia/reperfusion injury 被引量:4
5
作者 Shanyong Zhang Dankai Wu +4 位作者 Jincheng Wang Yongming Wang Guoxiang Wang Maoguang Yang Xiaoyu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2225-2235,共11页
Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ... Spinal cord ischemia/reperfusion injury is a stress injury to the spinal cord. Our previous studies using differential proteomics identified 21 differentially expressed proteins (n 〉 2) in rabbits with spinal cord ischemia/reperfusion injury. Of these proteins, stress-related proteins included protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70. In this study, we established New Zealand rabbit models of spinal cord ischemia/reperfusion injury by abdominal aorta occlusion. Results demonstrated that hind limb function initially improved after spinal cord ischemia/reperfusion injury, but then deteriorated. The pathological morphology of the spinal cord became aggravated, but lessened 24 hours after reperfusion. However, the numbers of motor neurons and interneurons in the spinal cord gradually decreased. The expression of protein disulfide isomerase A3, stress-induced-phosphoprotein 1 and heat shock cognate protein 70 was induced by ischemia/reperfusion injury. The expression of these proteins increased within 12 hours after reperfusion, and then decreased, reached a minimum at 24 hours, but subsequently increased again to similar levels seen at 6-12 hours, showing a characterization of induction-inhibition-induc- tion. These three proteins were expressed only in cytoplasm but not in the nuclei. Moreover, the expression was higher in interneurons than in motor neurons, and the survival rate of interneurons was greater than that of motor neurons. It is assumed that the expression of stress-related proteins exhibited a protective effect on neurons. 展开更多
关键词 neural regeneration spinal cord ischemia/reperfusion injury protein disulfide isomerase A3 stress-induced-phosphoprotein 1 heat shock cognate protein 70 NEURON NECROSIS apoptosis grants-supported paper NEUROREGENERATION
下载PDF
MicroRNA-101a-3p mimic ameliorates spinal cord ischemia/reperfusion injury 被引量:3
6
作者 Zai-Li Zhang Dan Wang Feng-Shou Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期2022-2028,共7页
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases,but its role in spinal cord ischemia/reperfusion injury remains unclear.In this study,we established a rat model... miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases,but its role in spinal cord ischemia/reperfusion injury remains unclear.In this study,we established a rat model of spinal cord ischemia/reperfusion injury by clamping the aortic arch for 14 minutes followed by reperfusion for 24 hours.Results showed that miR-101a-3p expression in L4-L6 spinal cord was greatly decreased,whereas MYCN expression was greatly increased.Dual-luciferase reporter assay results showed that miR-101a-3p targeted MYCN.MYCN immunoreactivity,which was primarily colocalized with neurons in L4-L6 spinal tissue,greatly increased after spinal cord ischemia/reperfusion injury.However,intrathecal injection of an miR-101a-3p mimic within 24 hours before injury decreased MYCN,p53,caspase-9 and interleukin-1βexpression,reduced p53 immunoreactivity,reduced the number of MYCN/NeuN-positive cells and the number of necrotic cells in L4-L6 spinal tissue,and increased Tarlov scores.These findings suggest that the miR-101a-3p mimic improved spinal ischemia/reperfusion injury-induced nerve cell apoptosis and inflammation by inhibiting MYCN and the p53 signaling pathway.Therefore,miR-101a-3p mimic therapy may be a potential treatment option for spinal ischemia/reperfusion injury. 展开更多
关键词 apoptosis CASPASE-9 INFLAMMATION INTERLEUKIN-1Β microRNA-101a-3p MYCN nerve cells p53 spinal cord ischemia/reperfusion injury
下载PDF
Influence of tanshinone on N-methyl-D-aspartate receptor 1 protein expression in a rat model of spinal cord ischemia/reperfusion injury 被引量:2
7
作者 Li Zhang Xiang Lin Yong Fu Guangrui Nie Qiqing Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第1期10-14,共5页
BACKGROUND: Tanshinone has been previously shown to be involved in the prevention and treatment of cerebral ischemia/reperfusion injury. In addition, excitatory amino acid-mediated neu- rotoxicity may induce neuronal... BACKGROUND: Tanshinone has been previously shown to be involved in the prevention and treatment of cerebral ischemia/reperfusion injury. In addition, excitatory amino acid-mediated neu- rotoxicity may induce neuronal damage following spinal cord ischemia/reperfusion injury. OBJECTIVE: To explore the interventional effect of tanshinone on N-methyl-D-aspartate receptor 1 (NMDAR1) protein expression in a rat model of spinal cord ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized molecular biology experiment was conducted at the Traumatology & Orthopedics Laboratory of Fujian Hospital of Traditional Chinese Medicine (Key Laboratory of State Administration of Traditional Chinese Medicine) between September 2007 and May 2008. MATERIALS: A total of 88 Sprague Dawley rats were randomly divided into a sham operation (n = 8), model (n = 40), and tanshinone (n = 40) groups. Thirty minutes after ischemia, rats in the model and tanshinone groups were observed at hour 0.5, 1, 4, 8, and 12 following perfusion, with eight rats for each time point. METHODS: Abdominal aorta occlusion was performed along the right renal arterial root using a Scoville-Lewis clamp to induce spinal cord ischemia. Blood flow was recovered 30 minutes following occlusion to establish models of spinal cord ischemia/reperfusion injury. Abdominal aorta occlusion was not performed in the sham operation group. An intraperitoneal injection of tanshinone ⅡA sulfonic sodium solution (0.2 L/g) was administered to rats in the tanshinone group, preoperatively. In addition, rats in the sham operation and model groups were treated with an intraperitoneal injection of the same concentration of saline, preoperatively. MAIN OUTCOME MEASURES: NMDAR1 protein expression in the anterior horn of the spinal cord, accumulative absorbance, average absorbance, and area of positive cells were detected in the three groups through immunohistochemistry. RESULTS: All 88 rats were included in the final analysis. (1) NMDAR1 protein expression increased following 30-minute ischemia/1-hour reperfusion injury to the spinal cord, and reached a peak 4 hours after reperfusion. (2) Accumulative absorbance and average absorbance of NMDAR1, as well as area of positive cells in the model group, were significantly greater than the sham operation group at each time point (P 〈 0.05). However, values in the tanshinone group were significantly less than the model group (P 〈 0.05). CONCLUSION: NMDAR1 protein expression was rapidly increased following spinal cord ischemia/reperfusion injury and reached a peak 4 hours following reperfusion. In addition, tanshinone downregulated NMDAR1 protein expression in the anterior horn of the spinal cord. 展开更多
关键词 spinal cord ischemia/reperfusion injury TANSHINONE N-methyI-D-aspartate receptor 1
下载PDF
Tacolimus Postconditioning Alleviates Apoptotic Cell Death in Rats after Spinal Cord Ischemia-reperfusion Injury via Up-regulating Protein-Serine-Threonine Kinases Phosphorylation 被引量:2
8
作者 潘峰 程艳香 +7 位作者 祝成亮 陶凤华 李章华 陶海鹰 贺斌 余铃 戢鹏 唐欢 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第6期852-856,共5页
The effects of tacrolimus postconditioning on protein-serine-threonine kinases (Akt) phos- phorylation and apoptotic cell death in rats after spinal cord ischemia-reperfusion injury were investi- gated. Ninety male ... The effects of tacrolimus postconditioning on protein-serine-threonine kinases (Akt) phos- phorylation and apoptotic cell death in rats after spinal cord ischemia-reperfusion injury were investi- gated. Ninety male SD rats were randomly divided into sham operation group, ischemia-reperfusion group and tacrolimus postconditioning group. The model of spinal cord ischemia was established by means of catheterization through femoral artery and balloon dilatation. The spinal cord was reperfused 20 min after ischemia via removing saline out of balloon. The corresponding spinal cord segments were excised and determined for Akt activity in spinal cord tissue by using Western blotting at 5, 15, and 60 min after reperfusion respectively. Spinal cord tissue sections were stained immunohistochemically for detection of the phosphorylated Akt expression at 15 min after reperfusion. Flow cytometry was applied to assess apoptosis of neural cells, and dry-wet weights method was employed to measure water content in spinal cord tissue at 24 h after reperfusion. The results showed that the activities of Akt in tarcolimus postconditioning group were significantly higher than those in ischemia-reperfusion group at 5, 15, and 60 min after reperfusion (P〈0.05, P〈0.01). The Akt activities reached the peak at 15 min after reperfu- sion in ischemia-reperfusion group and tacrolimus postconditioning group. The percentage of apoptotic cells and water content in spinal cord tissue were significantly reduced (P〈0.01) in tacrolimus postcon- ditioning group as compared with those in ischemia-reperfusion group at 24 h after reperfusion. It is concluded that tacrolimus postconditioning can increase Akt activity in spinal cord tissue of rats, inhibit apoptosis of neural cells as well as tissue edema, and thereby alleviate spinal cord ischemia-reperfusion injury. 展开更多
关键词 protein-serine-threonine kinases reperfusion injury spinal cord ischemia tacrolimus post- conditioning
下载PDF
Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits 被引量:12
9
作者 LeiMingWANG YeYAN +2 位作者 LiangJianZOU NaiHeJING ZhiYunXU 《Cell Research》 SCIE CAS CSCD 2005年第5期387-393,共7页
Paraplegia is a disastrous complication after operations of descending and thoracoabdominal aortic aneurysm. Re- gional hypothermia protects against spinal cord ischemia although the protective mechanism is not well k... Paraplegia is a disastrous complication after operations of descending and thoracoabdominal aortic aneurysm. Re- gional hypothermia protects against spinal cord ischemia although the protective mechanism is not well know. The objective of this study is to examine whether hypothermia protects the spinal cord by preventing apoptosis of nerve cell and also investigate a possible mechanism involved in hypothermia neuroprotection. Cell apoptosis with necrosis was evident in the spinal cord 24 h after 30 min of ischemia. Moderate hypothermia decreased the incidence of apoptotic nerve cells. Both cell apoptosis and necrosis were attenuated by hypothermia. p53 expression increased and bcl-2 expression declined after ischemia, while hypothermia mitigated these changes. This study suggests that apoptosis contributes to cell death after spinal cord ischemia, and that moderate hypothermia can prevent nerve cell apoptosis by a mechanism associated with bcl-2 and p53 genes. 展开更多
关键词 神经细胞 细胞凋亡 脊髓 局部缺血 下身麻痹 低温 BCL-2基因 P53基因
下载PDF
Perfusion of gastrodin in abdominal aorta for alleviating spinal cord ischemia reperfusion injury 被引量:8
10
作者 Hua Fang Jing-Chao Zhang +6 位作者 Miao Yang Hua-Feng Li Jian-Ping Zhang Fang-Xiang Zhang Quan-Yun Wang Ru-Rong Wang Jin Liu 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第7期678-683,共6页
Objective:To observe the effects of perfusion of the gastrodin in abdominal aorta for alleviating the spinal cord ischemia reperfusion injury(SCIRI).Methods:A total of 36 New Zealand white rabbits were divided randoml... Objective:To observe the effects of perfusion of the gastrodin in abdominal aorta for alleviating the spinal cord ischemia reperfusion injury(SCIRI).Methods:A total of 36 New Zealand white rabbits were divided randomly into sham-operated group(group S),control group(group C) and gastrodin group(group G),12 rabbits for each group.Aorta abdominalis infrarenalis blocking method was applied to establish the SCIRI model.The changes of motor evoked potentials(MEPs) before the ischemia and on 30 min,60 min,6 h,12 h and 24 h of reperfusion of the gastrodin were respectively recorded,and the neurologic function score before the ischemia,on the 6 h,12 h and 24 h of the reperfusion of the gastrodin were assessed.And the changes of the concentration of serum neuron specific enolase(NSE),interleukin(IL)-l β and IL-8 were measured before the ischemia,after 45 min of ischemia,and on 30 min,60 min,6 h,12 h and 24 h of reperfusion of gastrodin.Then the levels of spinal cord nerve cells mitochondrial superoxide dismutase(SOD),reactive oxygen species(ROS),glutathione peroxidase(GSH-PX),malondialdehyde(MDA),total antioxidant capacity(T-AOC) and mitochondrial swelling degree(MSD) were tested and the histopathologic changes in spinal cord tissues were observed.Results:The levels of the NSE,IL-lfter the ischemβ,IL-8,ROS,MDA and MSD of group C were all significantly elevated aia(P<0.01);the levels of the spinal nerve cell mitochondria SOD,GSH-PX and T-AOC were all significantly reduced(P<0.01),MEPs and spinal cord tissue pathology were damaged significantly(P<0.01).The rate of motor neuron abnormalities and the damages of spinal cord tissue pathology of group G were significantly milder than those of group C(P<0.01);the levels of NSE,IL-lROS,MDA and MSD were significantly lower than those of group C(P< 0.01),but tβ,IL-8,he levels of SOD,GSH-PX and T-AOC were all significantly higher than those of group C(P<0.01),and the recovery of neurologic function score during the reperfusion of gastrodin was significantly faster than group C(P<0.01).Conclusions:Perfusion of the gastrodin in abdominal aorta can alleviate the spinal cord ischemiare perfusion injury by promoting the mitochondrial antioxidant capacity and inhibiting the inflammatory reaction. 展开更多
关键词 GASTRODIN spinal cord ischemia REPERFUSION injury Mitochondria Motor EVOKED potential
下载PDF
Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury 被引量:5
11
作者 Yiming Ji Bin Meng +2 位作者 Chenxi Yuan Huilin Yang Jun Zou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3087-3094,共8页
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-... It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury somatosensory evoked potentials spinal cord ischemia REPERFUSION iatrogenic spinal cord injury HISTOPATHOLOGY abdominal aorta occlusion model latency grants-supported paper NEUROREGENERATION
下载PDF
Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia? 被引量:3
12
作者 Murat Sahin Huriye Gullu +3 位作者 Kemal Peker Ilyas Sayar Orhan Binici Huseyin Yildiz 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1825-1829,共5页
The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spin... The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol(100 and 300 μg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. 展开更多
关键词 nerve regeneration PROPOFOL pre-treatment spinal cord ischemia NEUROPROTECTION PARAPLEGIA neural regeneration
下载PDF
Key genes expressed in different stages of spinal cord ischemia/reperfusion injury ischemia/reperfusion injury 被引量:10
13
作者 lian-an Li Chun-fang Zan +6 位作者 Peng Xia Chang-jun Zheng Zhi-ping Qi Chun-xu Li Zhi-gang Liu Ting-ting Hou Xiao-yu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第11期1824-1829,共6页
The temporal expression of microRNA after spinal cord ischemia/reperfusion injury is not yet fully understood. In the present study, we established a model of spinal cord ischemia in Sprague-Dawley rats by clamping th... The temporal expression of microRNA after spinal cord ischemia/reperfusion injury is not yet fully understood. In the present study, we established a model of spinal cord ischemia in Sprague-Dawley rats by clamping the abdominal aorta for 90 minutes, before allowing reperfusion for 24 or 48 hours. A sham-operated group underwent surgery but the aorta was not clamped. The damaged spinal cord was removed for hematoxylin-eosin staining and RNA extraction. Neuronal degeneration and tissue edema were the most severe in the 24- hour reperfusion group, and milder in the 48-hour reperfusion group. RNA amplification, labeling, and hybridization were used to obtain the microRNA expression profiles of each group. Bioinformatics analysis confirmed tour differentially expressed microRNAs (miR-22-3p, miR-743b-3p, miR-201-5p and miR-144-5p) and their common target genes (Tmem69 and Cxcll0). Compared with the sham group, miR- 22-3p was continuously upregulated in all three ischemia groups but was highest in the group with 11o reperfusion, whereas miR-743b-3p, miR-201-5p and miR-144-5p were downregulated in the three ischemia groups. We have successfully identified the key genes expressed at different stages of spinal cord ischemia/reperfusion injury, which provide a reference for future investigations into the mechanism of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury ischemia/reperfusion injury mRNA MICRORNA BIOINFORMATICS Tmem69 CXCL10 TRANSCRIPTOME microRNA arrays neural regeneration
下载PDF
Neuroprotection of Erythropoietin and Methylprednisolone against Spinal Cord Ischemia-Reperfusion Injury 被引量:12
14
作者 熊敏 陈森 +3 位作者 余化龙 刘志刚 曾云 李锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第5期652-656,共5页
Recent research based on various animal models has shown the neuroprotective effects of erythropoietin (EPO). However, few studies have examined such effects of EPO in the clinic. In this study we enrolled patients ... Recent research based on various animal models has shown the neuroprotective effects of erythropoietin (EPO). However, few studies have examined such effects of EPO in the clinic. In this study we enrolled patients with spinal cord ischemia-reperfusion (I-R) injury to investigate the clinical application of EPO and methylprednisolone (MP) for the neuroprotection against spinal cord I-R injury. Retrospective analysis of 63 cases of spinal cord I-R injury was performed. The Frankel neurological performance scale was used to evaluate the neurological function after spinal cord injury (SCI), including 12 cases of scale B, 30 cases of scale C, and 21 cases of scale D. These cases were divided into 2 groups: group A (27 cases) got treatment with both EPO and MP; group B (36 cases) got treatment with MP only. The neurological function of patients after treatment was evaluated by American Spinal Cord Injury Association (ASIA) index score, and activity of daily living (ADL) of the patients was also recorded. All patients got follow-up and the follow-up period ranged from 24 to 39 months (mean 26 months). There was no significance difference in neurological function between groups A and B before the treatment (P〉0.05). However, the neurological function and ADL scores were significantly improved 1 week, 1 year or 2 years after the treatment compared to those before the treatment (P〈0.05), and the improvement was more significant in group A than in group B (P〈0.05). It is suggested that the clinical application of EPO and MP provides the neuroprotection against spinal cord I-R injury. 展开更多
关键词 erythropoietin methylprednisolone neuroprotection spinal cord ischemia-reperfusion in-jury
下载PDF
Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury:a transcriptomics study 被引量:6
15
作者 Zhi-ping Qi Peng Xia +3 位作者 Ting-ting Hou Ding-yang Li Chang-jun Zheng Xiao-yu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期480-486,共7页
Following spinal cord ischemia/reperfusion injury,an endogenous damage system is immediately activated and participates in a cascade reaction.It is difficult to interpret dynamic changes in these pathways,but the exam... Following spinal cord ischemia/reperfusion injury,an endogenous damage system is immediately activated and participates in a cascade reaction.It is difficult to interpret dynamic changes in these pathways,but the examination of the transcriptome may provide some information.The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome.We used DNA microarrays to measure the expression levels of dynamic evolution-related m RNA after spinal cord ischemia/reperfusion injury in rats.The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours.The simple ischemia group and sham group served as controls.After rats had regained consciousness,hindlimbs showed varying degrees of functional impairment,and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups.Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group,and mitigated in the 48-hour reperfusion group.There were 8,242 differentially expressed m RNAs obtained by Multi-Class Dif in the simple ischemia group,24-hour and 48-hour reperfusion groups.Sixteen m RNA dynamic expression patterns were obtained by Serial Test Cluster.Of them,five patterns were significant.In the No.28 pattern,all differential genes were detected in the 24-hour reperfusion group,and their expressions showed a trend in up-regulation.No.11 pattern showed a decreasing trend in m RNA whereas No.40 pattern showed an increasing trend in m RNA from ischemia to 48 hours of reperfusion,and peaked at 48 hours.In the No.25 and No.27 patterns,differential expression appeared only in the 24-hour and 48-hour reperfusion groups.Among the five m RNA dynamic expression patterns,No.11 and No.40 patterns could distinguish normal spinal cord from pathological tissue.No.25 and No.27 patterns could distinguish simple ischemia from ischemia/reperfusion.No.28 pattern could analyze the need for inducing reperfusion injury.The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration spinal cord injury ischemia/reperfusion injury messenger RNA transcription oligonucleotide sequence microarray transcriptome c DNA sequence NADPH oxidase neural regeneration
下载PDF
Ginsenoside Rd inhibits apoptosis following spinal cord ischemia/reperfusion injury 被引量:13
16
作者 Baogang Wang Qingsan Zhu +2 位作者 Xiaxia Man Li Guo Liming Hao 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第18期1678-1687,共10页
Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mech... Ginsenoside Rd has a clear neuroprotective effect against ischemic stroke. We aimed to verify the neuroprotective effect of ginsenoside Rd in spinal cord ischemia/reperfusion injury and explore its anti-apoptotic mechanisms. We established a spinal cord ischemia/reperfusion injury model in rats through the occlusion of the abdominal aorta below the level of the renal artery for 1 hour. Successfully established models were injected intraperitoneally with 6.25, 12.5, 25 or 50 mg/kg per day ginsenoside Rd. Spinal cord morphology was observed at 1, 3, 5 and 7 days after spinal cord ischemia/reperfusion injury. Intraperitoneal injection of ginsenoside Rd in ischemia/reperfusion injury rats not only improved hindlimb motor function and the morphology of motor neurons in the anterior horn of the spinal cord, but it also reduced neuronal apoptosis. The optimal dose of ginsenoside Rd was 25 mg/kg per day and the optimal time point was 5 days after ischemia/ reperfusion. Immunohistochemistry and western blot analysis showed ginsenoside Rd dose-de- pendently inhibited expression of pro-apoptotic Caspase 3 and down-regulated the expression of the apoptotic proteins ASK1 and JNK in the spinal cord of rats with spinal cord ischemia/reper- fusion injury. These findings indicate that ginsenoside Rd exerts neuroprotective effects against spinal cord ischemia/reperfusion injury and the underlying mechanisms are achieved through the inhibition of ASK1-JNK pathway and the down-regulation of Caspase 3 expression. 展开更多
关键词 nerve regeneration spinal cord injury ginsenoside Rd ischemia/reperfusion injury APOPTOSIS ASKI INK Caspase 3 neural regeneration
下载PDF
Pretreament with repeated electroacupuncture induced neuroprotection against spinal cord ischemia-reperfusion injury in rabbits 被引量:1
17
作者 曾毅 熊利泽 +4 位作者 巩固 郑恒兴 王强 朱正华 杨静 《中国临床康复》 CSCD 2003年第2期308-309,T005,共3页
AIM:To investigate whether pretreatment with repeated electroacupuncture (EA) could induce ischemic tolerance against transient spinal cord ischemia in rabbits.METHODS:24male New Zealand white rabbits were randomly as... AIM:To investigate whether pretreatment with repeated electroacupuncture (EA) could induce ischemic tolerance against transient spinal cord ischemia in rabbits.METHODS:24male New Zealand white rabbits were randomly assigned to 3 groups(n=8 each),animals in the control group received no treatment;animals in the SP and EA group received sodium pentobarbitone 30mg/kg each day for 5 days;animals in EA group were also received electroacupuncture at the Zusanli acupoint 30min a day for 5days.24hours after the last treatment,spinal cord ischemia was induced by an infrarenal aortic occlusion for 20min.Hind-limb motor function was determined with the Tarlov criteria at 4,8,12,24 and 48h after reperfusion.All animals were sacrificed at 48h after reperfusion and the spinal cords(I5) were remoed immediately for histopathologic study.RESULTS:The neurologic outcome and histopathology(48h) in the EA group were significantly better than the control group(P=0.006).CONCLUSION:Pre-ischemic treatment with electroacupuncture significantly reduces spinal cord ischemia-reperfusion injury in rabbits. 展开更多
关键词 脊髓损伤 缺血再灌注 预处理 动物实验
下载PDF
CNB-001 reduces paraplegia in rabbits following spinal cord ischemia
18
作者 Paul A. Lapchak Paul D. Boitano +5 位作者 Rene Bombien Daisy Chou Margot Knight Anja Muehle Mihaela Te Winkel Ali Khoynezhad 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第12期2192-2198,共7页
aortic aneurysm repair and thoracic endovascular aortic repair results in devastating clinical deficits in patients. Because spinal cord ischemia is inadequately treated, we studied the effects of [4-((1E)-2-(5-(4-hyd... aortic aneurysm repair and thoracic endovascular aortic repair results in devastating clinical deficits in patients. Because spinal cord ischemia is inadequately treated, we studied the effects of [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl) vinyl)-2-methoxy-phenol)](CNB-001), a novel curcumin-based compound, in a rabbit SCI model. CNB-001 is known to inhibit human 5-lipoxygenase and 15-lipoxygenase and reduce the ischemia-induced inflammatory response. Moreover, CNB- 001 can reduce the level of oxidative stress markers and potentiate brain-derived neurotrophic factor and brain-derived neurotrophic factor receptor signaling. The Tarlov scale and quantal analysis technique results revealed that CNB-001 administered as an intravenous dose (bolus) 30 minutes prior to spinal cord ischemia improved the behaviors of female New Zealand White rabbits. The improvements were similar to those produced by the uncompetitive N-methyl-D-aspartate receptor antagonist memantine. At 48 hours after aortic occlusion, there was a 42.7% increase (P < 0.05) in tolerated ischemia duration (n = 14) for rabbits treated with CNB-001 (n = 16), and a 72.3% increase for rabbits treated with the positive control memantine (P < 0.05)(n = 23) compared to vehicle-treated ischemic rabbits (n = 22). CNB-001 is a potential important novel treatment for spinal cord ischemia induced by aortic occlusion. All experiments were approved by the CSMC Institutional Animal Care and Use Committee (IACUC #4311) on November 1, 2012. 展开更多
关键词 curcumin analog spinal cord injury spinal cord ischemia thoraco-abdominal AORTIC aneurysm thoracic ENDOVASCULAR AORTIC repair motor function neuroprotection NEUROREPAIR
下载PDF
Protective effects of prostaglandin E1 perfusion againstspinal cord ischemia-reperfusion injury in a rabbit model
19
作者 Xifan Mei Yansong Wang Chang Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第6期659-662,共4页
BACKGROUND: Prostaglandin E1 (PGE1) is known to be protective in ischemia-reperfusion of heart, lung,renal, and liver tissue. It still remains to be determined whether PGE1 exhibits similar protection against spina... BACKGROUND: Prostaglandin E1 (PGE1) is known to be protective in ischemia-reperfusion of heart, lung,renal, and liver tissue. It still remains to be determined whether PGE1 exhibits similar protection against spinal cord ischemia-reperfusion injury in a rabbit model. OBJECTIVE: To observe the large, ventral horn, motor neurons of the spinal cord, as well as limb function, and to investigate whether perfusion of PGE1 exhibits protective effects against spinal cord ischemia-reperfusion injury in a rabbit model. DESIGN, TIME AND SETTING: Controlled observation. The experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University between June and October 2007. MATERIALS: Twenty male, New Zealand white rabbits, weighing 2.0 kg and of mixed gender, were used in the present study. The following chemicals and compounds were used: prostaglandin E1 injectable powder,as well as malondialdehyde and ATPase kits. Animal intervention was in accordance with animal ethical standards. METHODS: We separated rabbits into control and experimental groups randomly, with 10 rabbits in each group. Rabbits were used as spinal cord ischemia models by segmentally cross-clamping the infrarenal aorta. The control group was subsequently perfused for five minutes with blood and saline solution, and the experimental group was perfused for 5 minutes with blood and saline solution containing PGE1 (100 ng/kg/min). MAIN OUTCOME MEASURES: The neurological function of the hind limbs was assessed 12, 24, and 48 hours after model establishment. All animals were sacrificed and spinal cords were harvested for histological analyses. The large motor neurons in the ventral horn of L1-7 were observed by inverted microscope. RESULTS: All 20 rabbits were included in the final analysis, without any loss. In the ventral horn of the L5-7 segments, there were more large motor neurons that appeared viable in the experimental group than the control group (P 〈 0.05). The scores of hind limb functions were greater in the experimental group after 12, 24, and 48 hours (P 〈 0.01). CONCLUSION: Perfusion of PGE1 reduced the amount of neuronal damage in the spinal cord ischemia-reperfusion injury rabbit model. These results correlated with increased numbers large motor neurons in the ventral horn of the spinal cord, as well as improved hind limb function. 展开更多
关键词 prostaglandin E1 spinal cord ischemia-REPERFUSION NEURON
下载PDF
Review of Thoracic Endovascular Aneurysm Repair (TEVAR), Spinal Cord Ischemia (SCI), Cerebrospinal Fluid (CSF) Drainage and Blood Pressure (BP) Augmentation
20
作者 R. Englund 《Surgical Science》 2017年第2期73-81,共9页
The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is al... The object of this review is to examine the role of TEVAR in causing SCI. The anatomy and physiology of blood flow to the spinal cord is examined. The role of auto regulation of blood flow within the spinal cord is also examined. This review examines the reported results from the scientific literature of the effect of thoracic aortic aneurysm repair on spinal cord blood flow. In the light of the-se findings several conclusions can reasonably be reached. These conclusions are that the development of SCI can reasonably be predicted based on complexity and extent of the TEVAR procedure performed and BP augmentation and CSF drainage can significantly reduce the impact of SCI. 展开更多
关键词 THORACIC ENDOVASCULAR Aortic ANEURYSM Repair spinal cord ischemia Means Systemic Arterial Blood Pressure CEREBROspinal Fluid Drainage COLLATERAL Network
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部