Leukemia inhibitory factor receptor(LIFR),as a neuroregulatory cytokine receptor,generally shows a neuroprotective effect in central nervous system injuries.In this study,to understand the effect of LIFR on pathogenes...Leukemia inhibitory factor receptor(LIFR),as a neuroregulatory cytokine receptor,generally shows a neuroprotective effect in central nervous system injuries.In this study,to understand the effect of LIFR on pathogenesis of neural tube defects,we explored spatiotemporal expression of LIFR at different stages of fetal development in normal and neural tube defect embryos.Spina bifida aperta was induced with all-trans retinoic acid on embryonic day 10 in rats,and the spatiotemporal expression of LIFR was investigated in spina bifida aperta rats and healthy rats from embryonic day 11 to 17.Real time-polymerase chain reaction and western blot assay were used to examine mRNA and protein expression of LIFR in healthy control and neural tube defect embryos.Results of the animal experiment demonstrated that expression of LIFR protein and mRNA in the spinal cords of normal rat embryos increased with embryonic development.LIFR was significantly downregulated in the spinal cords of spina bifida aperta rats compared with healthy rats from embryonic days 11 to 17.Immunohistochemical staining showed that the expression of LIFR in placenta and spinal cord in spina bifida aperta rat embryos was decreased compared with that in control embryos at embryonic day 15.Results from human embryo specimens showed that LIFR mRNA expression was significantly down-regulated in spinal cords of human fetuses with neural tube defects compared with normal controls at a gestational age of 24 to 33 weeks.The results were consistent with the down-regulation of LIFR in the animal experiments.Our study revealed spatiotemporal changes in expression of LIFR during embryonic neurulation.Thus,LIFR might play a specific role in neural tube development.All animal and human experimental procedures were approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS106K)on February 25,2016.展开更多
Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children ...Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents.Of eight copy number variations,four were non-polymorphic.These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes,and microcephaly.Gene function enrichment analysis revealed that COX8 C,a gene associated with metabolic disorders of the nervous system,was located in the copy number variation region of Patient 1.Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome.Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.展开更多
The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-dedved neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection si...The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-dedved neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinasel/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinasel/2 signaling pathway in a rat model of adult spina cord transection.展开更多
目的本文旨在探讨维甲酸诱导脊柱裂胎鼠脊髓组织Caspase-3表达情况。方法选取孕10 d Wistar大鼠,实验组用溶有维甲酸(40mg/ml)的橄榄油,以135 mg/kg经胃管注入给药制作脊柱裂畸形大鼠模型;对照组选取孕10 d Wistar大鼠给等量橄榄油。将...目的本文旨在探讨维甲酸诱导脊柱裂胎鼠脊髓组织Caspase-3表达情况。方法选取孕10 d Wistar大鼠,实验组用溶有维甲酸(40mg/ml)的橄榄油,以135 mg/kg经胃管注入给药制作脊柱裂畸形大鼠模型;对照组选取孕10 d Wistar大鼠给等量橄榄油。将实验组及对照组按照孕12、15、17和20 d分为4组。应用免疫组织化学方法比较分析Caspase-3在对照组、畸形组胎鼠脊髓组织细胞中的分布和表达情况。结果脊柱裂大鼠脊髓神经组织中Caspase-3在15 d开始增多,一直持续到20 d胚胎大鼠。其增高情况明显高于同一时间点对照组大鼠。胚胎15、17和20 d显性脊柱裂畸形鼠脊髓组织Caspase-3阳性细胞数多于对照组,荧光强度高于对照组。结论维甲酸诱导的脊柱裂胎鼠Caspase-3表达明显高于正常发育胎鼠。展开更多
基金supported by the National Natural Science Foundation of China,No.81601292(to DA),No.81671469(to ZWY)the National Basic Research Program of China(973 Program),No.2013CB945402(to ZWY)the National Key Research and Development Program of China,No.2016YFC1000505(to ZWY)
文摘Leukemia inhibitory factor receptor(LIFR),as a neuroregulatory cytokine receptor,generally shows a neuroprotective effect in central nervous system injuries.In this study,to understand the effect of LIFR on pathogenesis of neural tube defects,we explored spatiotemporal expression of LIFR at different stages of fetal development in normal and neural tube defect embryos.Spina bifida aperta was induced with all-trans retinoic acid on embryonic day 10 in rats,and the spatiotemporal expression of LIFR was investigated in spina bifida aperta rats and healthy rats from embryonic day 11 to 17.Real time-polymerase chain reaction and western blot assay were used to examine mRNA and protein expression of LIFR in healthy control and neural tube defect embryos.Results of the animal experiment demonstrated that expression of LIFR protein and mRNA in the spinal cords of normal rat embryos increased with embryonic development.LIFR was significantly downregulated in the spinal cords of spina bifida aperta rats compared with healthy rats from embryonic days 11 to 17.Immunohistochemical staining showed that the expression of LIFR in placenta and spinal cord in spina bifida aperta rat embryos was decreased compared with that in control embryos at embryonic day 15.Results from human embryo specimens showed that LIFR mRNA expression was significantly down-regulated in spinal cords of human fetuses with neural tube defects compared with normal controls at a gestational age of 24 to 33 weeks.The results were consistent with the down-regulation of LIFR in the animal experiments.Our study revealed spatiotemporal changes in expression of LIFR during embryonic neurulation.Thus,LIFR might play a specific role in neural tube development.All animal and human experimental procedures were approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University,China(approval No.2016PS106K)on February 25,2016.
文摘Copy number variations have been found in patients with neural tube abnormalities.In this study,we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents.Of eight copy number variations,four were non-polymorphic.These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes,and microcephaly.Gene function enrichment analysis revealed that COX8 C,a gene associated with metabolic disorders of the nervous system,was located in the copy number variation region of Patient 1.Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome.Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.
文摘The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-dedved neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinasel/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinasel/2 signaling pathway in a rat model of adult spina cord transection.
文摘目的本文旨在探讨维甲酸诱导脊柱裂胎鼠脊髓组织Caspase-3表达情况。方法选取孕10 d Wistar大鼠,实验组用溶有维甲酸(40mg/ml)的橄榄油,以135 mg/kg经胃管注入给药制作脊柱裂畸形大鼠模型;对照组选取孕10 d Wistar大鼠给等量橄榄油。将实验组及对照组按照孕12、15、17和20 d分为4组。应用免疫组织化学方法比较分析Caspase-3在对照组、畸形组胎鼠脊髓组织细胞中的分布和表达情况。结果脊柱裂大鼠脊髓神经组织中Caspase-3在15 d开始增多,一直持续到20 d胚胎大鼠。其增高情况明显高于同一时间点对照组大鼠。胚胎15、17和20 d显性脊柱裂畸形鼠脊髓组织Caspase-3阳性细胞数多于对照组,荧光强度高于对照组。结论维甲酸诱导的脊柱裂胎鼠Caspase-3表达明显高于正常发育胎鼠。