期刊文献+
共找到2,445篇文章
< 1 2 123 >
每页显示 20 50 100
2D finite element analysis of thermal balance for drained aluminum reduction cells 被引量:3
1
作者 刘伟 李劼 +1 位作者 赖延清 刘业翔 《Journal of Central South University of Technology》 EI 2007年第6期783-787,共5页
Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to comp... Based on the principle of energy conservation,the applicable technique for drained cell retrofitted from conventional one was analyzed with 2D finite element model. The model employed a 1D heat transfer scheme to compute iteratively the freeze profile until the thickness variable reached the terminating requirement. The calculated 2D heat dissipation from the cell surfaces was converted into the overall 3D heat loss. The potential drop of the system, freeze profile and heat balance were analyzed to evaluate their variation with technical parameters when designing the 150 kA conventional cell based drained cell. The simulation results show that the retrofitted drained cell is able to keep thermal balance under the conditions that the current is 190 kA, the anodic current density is 0.96 A/cm2, the anode-cathode distance is 2.5 cm, the alumina cover is 16 cm thick with a thermal conductivity of 0.20 W/(m·℃ ) and the electrolysis temperature is 946 ℃ . 展开更多
关键词 drained cell thermo-electric field thermal balance finite element analysis
下载PDF
Experimental and Finite Element Analysis for Multi-lead Rubber Bearings:A Comparative Study
2
作者 聂肃非 江宜城 +1 位作者 叶志雄 李黎 《Journal of Southwest Jiaotong University(English Edition)》 2010年第2期134-139,共6页
The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested fo... The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness. 展开更多
关键词 Bridge seismic isolation Multi-lead rubber bearing Nonlinear mechanical properties Experimental study Explicit finite element analysis
下载PDF
A MULTI-COUPLED FINITE ELEMENT ANALYSIS OF RESISTANCE SPOT WELDING PROCESS 被引量:3
3
作者 Hou Zhigang Wang Yuanxun +1 位作者 Li Chunzhi Chert Chuanyao 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第1期86-94,共9页
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire... A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated. 展开更多
关键词 finite element analysis (FEA) Resistance Spot Welding (RSW) electrical-thermal coupling thermo-elastic-plastic analysis thermal behavior mechanical feature
下载PDF
Thermal heat flux distribution prediction in an electrical vehicle battery cell using finite element analysis and neural network
4
作者 Luttfi A.Al-Haddad Latif Ibraheem +3 位作者 Ahmed I.EL-Seesy Alaa Abdulhady Jaber Sinan A.Al-Haddad Reza Khosrozadeh 《Green Energy and Intelligent Transportation》 2024年第3期54-62,共9页
In terms of battery design and evaluation,Electric Vehicles(EVs)are receiving a great deal of attention as a modern,eco-friendly,sustainable transportation method.In this paper,a novel battery pack is designed to main... In terms of battery design and evaluation,Electric Vehicles(EVs)are receiving a great deal of attention as a modern,eco-friendly,sustainable transportation method.In this paper,a novel battery pack is designed to maintain a uniform temperature distribution,allowing the battery to operate within its optimal temperature range.The proposed battery design is part of a main channel where a portion of cool air will pass from an inlet then exit from an outlet where a uniform temperature distribution is maintained.First,a 3-D model of a battery cell was created,followed by thermal simulation for 15C,25C,and 35C ambient temperatures.The simulation results reveal that the temperature distribution is nearly uniform,with slightly higher values in the middle portion of the cell height.Second,using finite element analysis(FEA),it was determined that the heat flux per unit area is nearly uniform with a slight increase at the edges.Third,a machine learning model is proposed by utilizing a neural network(NN).Lastly,the heat flux values were predicted using the NN model that was proposed.The model was assessed based on statistical measures where a root mean square error(RMSE)value of 0.87%was achieved.The NN outperformed FEA in terms of time consumption with a high prediction accuracy,leveraging the potential of adopting machine learning over FEA in related operational assessments. 展开更多
关键词 EV battery thermal distribution finite element analysis Neural network Heat flux
原文传递
Finite element analysis of three-dimensional laser-induced transient thermal grating in diamond/ZnSe system
5
作者 程营 黄巧建 刘晓峻 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4273-4278,共6页
This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical res... This paper uses finite element method to obtain the three-dimensional temperature field of laser-induced transient thermal grating (TTG) for two-layered structure of diamond film on ZnSe substrate. The numerical results indicate that unique two-times heating process is gradually experienced in the area between two adjacent grating stripes. However, there is a little change for the temperature field along the depth direction for the diamond film due to its great thermal conductivity. It further finds that the thickness of the diamond film has a significant influence on the temperature field in diamond/ZnSe system. The results are useful for the application of laser-induced TTG technique in film/substrate system. 展开更多
关键词 thermal analysis transient thermal grating diamond/ZnSe finite element method
下载PDF
Finite Element Analysis of Thermal Stresses in Ceramic/Metal Gradient Thermal Barrier Coatings 被引量:1
6
作者 明平顺 肖金生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期44-47,共4页
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ... This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results. 展开更多
关键词 functionally gradient material thermal barrier coating thermal stress finite element analysis ANSYS
下载PDF
Analysis of Thermal Behavior of High Frequency Transformers Using Finite Element Method 被引量:2
7
作者 Hossein Babaie Hassan Feshki Farahani 《Journal of Electromagnetic Analysis and Applications》 2010年第11期627-632,共6页
High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite ... High frequency transformer is used in many applications among the Switch Mode Power Supply (SMPS), high voltage pulse power and etc can be mentioned. Regarding that the core of these transformers is often the ferrite core;their functions partly depend on this core characteristic. One of the characteristics of the ferrite core is thermal behavior that should be paid attention to because it affects the transformer function and causes heat generation. In this paper, a typical high frequency transformer with ferrite core is designed and simulated in ANSYS software. Temperature rise due to winding current (Joule-heat) is considered as heat generation source for thermal behavior analysis of the transformer. In this simulation, the temperature rise and heat distribution are studied and the effects of parameters such as flux density, winding loss value, using a fan to cool the winding and core and thermal conductivity are investigated. 展开更多
关键词 High Frequency TRANSFORMERS thermal Behavior FERRITE Core and finite element analysis
下载PDF
Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal generator
8
作者 B. VIDHYA K. N. SRINIVAS 《Frontiers in Energy》 SCIE CSCD 2016年第4期424-440,共17页
This paper presents the simulation of major mechanical properties of a flux reversal generator (FRG) viz., computational fluid dynamic (CFD), thermal, and vibration. A three-dimensional finite element analysis (... This paper presents the simulation of major mechanical properties of a flux reversal generator (FRG) viz., computational fluid dynamic (CFD), thermal, and vibration. A three-dimensional finite element analysis (FEA) based CFD technique for finding the spread of pressure and air velocity in air regions of the FRG is described. The results of CFD are mainly obtained to fine tune the thermal analysis. Thus, in this focus, a flow analysis assisted thermal analysis is presented to predict the steady state temperature distribution inside FRG. The heat transfer coefficient of all the heat producing inner walls of the machine are evaluated from CFD analysis, which forms the main factor for the prediction of accurate heat distribution. The vibration analysis is illustrated. Major vibration sources such as mechanical, magnetic and applied loads are covered elaborately which consists of a 3D modal analysis to find the natural frequency ofFRG, a 3D static stress analysis to predict the deformation of the stator, rotor and shaft for different speeds, and an unbalanced rotor harmonic analysis to find eccentricity of rotor to make sure that the vibration of the rotor is within the acceptable limits. Harmonic analysis such as sine sweep analysis to identify the range of speeds causing high vibrations and steady state vibration at a mode frequency of 1500 Hz is presented. The vibration analysis investi- gates the vibration of the FRG as a whole, which forms the contribution of this paper in the FRG literature. 展开更多
关键词 flux reversal generator air velocity computa-tion fluid dynamics thermal analysis vibration analysis finite element analysis
原文传递
Extensions to the Finite Element Technique for the Magneto-Thermal Analysis of Aged Oil Cooled-Insulated Power Transformers
9
作者 Jehan Shazly Amr A. Adly 《Journal of Electromagnetic Analysis and Applications》 2012年第4期167-176,共10页
It is well known that the hot spot temperature represents the most critical parameter identifying the power rating of a transformer. This paper investigates the effect of the degradation of core magnetic properties on... It is well known that the hot spot temperature represents the most critical parameter identifying the power rating of a transformer. This paper investigates the effect of the degradation of core magnetic properties on temperature variation of aged oil-cooled transformers. Within this work, 2D accurate assessment of time average flux density distribution in an oil insulated-cooled 25 MVA transformer has been computed using finite-element analysis taking into account ageing and stress-induced non-uniform core permeability values. Knowing the core material specific loss and winding details, local core and winding losses are converted into heat. Based upon the ambient temperature outside the transformer tank and thermal heat transfer related factors, the detailed thermal modeling and analysis have then been carried out to determine temperature distribution everywhere. Analytical details and simulation results demonstrating effects of core magnetic properties degradation on hot spot temperatures of the transformer’s components are given in the paper. 展开更多
关键词 OIL Insulated-Cooled Power Transformer finite element Method ELECTROMAGNETIC Field analysis thermal analysis
下载PDF
Modal and Thermal Analysis of a Modified Connecting Rod of an Internal Combustion Engine Using Finite Element Method
10
作者 Nkrumah Jacob Kwaku Baba Ziblim +1 位作者 Sulemana Yahaya Sherry Kwabla Amedorme 《Modeling and Numerical Simulation of Material Science》 2023年第3期29-49,共21页
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec... The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy. 展开更多
关键词 Connecting Rod Steady-State thermal analysis DEFORMATION Heat Flux thermal and Modal finite element Method
下载PDF
Analysis and Design of Thermally Actuated Micro-Cantilevers for High Frequency Vibrations Using Finite Element Method
11
作者 Mojtaba Komeili Carlo Menon 《World Journal of Mechanics》 2016年第3期94-107,共14页
Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations... Vibrational behavior of thermally actuated cantilever micro-beams and their mechanical response at moderately high frequency under a non-harmonic periodic loading is studied in this paper. Two different configurations are considered: 1) a straight beam with two actuation layers on top and bottom which utilizes the bimorph effect to induce bending;2) a uniform beam with base excitation, where the beam is mounted on an actuator which moves it periodically at its base perpendicular to its axis. Generally, vibrating micro-cantilevers are required to oscillate at a specified frequency. In order to increase the efficiency of the system, and achieve deflections with low power consumption, geometrical features of the beams can be quantified so that the required vibrating frequency matches the natural frequencies of the beam. A parametric modal analysis is conducted on two configurations of micro-cantilever and the first natural frequency of the cantilevers as a function of geometrical parameters is extracted. To evaluate vibrational behavior and thermo-mechanical efficiency of micro-cantilevers as a function of their geometrical parameters and input power, a case study with a specified vibrating frequency is considered. Due to significant complexities in the loading conditions and thermo-mechanical behavior, this task can only be tackled via numerical methods. Selecting the geometrical parameters in order to induce resonance at the nominal frequency, non-linear time-history (transient) thermo-mechanical finite element analysis (using ANSYS) is run on each configuration to study its response to the periodic heating input. Approaches to improve the effectiveness of actuators in each configuration based on their implementation are investigated. 展开更多
关键词 Micro-Electro-Mechanical systems finite element thermal Actuations MICRO-CANTILEVER Dynamic Thermo-Mechanical analysis
下载PDF
Finite Element Analysis of the Material’s Area Affected during a Micro Thermal Analysis Applied to Homogeneous Materials
12
作者 Yoann Joliff Lenaik Belec Jean-Francois Chailan 《Journal of Surface Engineered Materials and Advanced Technology》 2011年第1期1-8,共8页
Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimat... Micro-thermal analysis (μ-TA), with a miniaturized thermo-resistive probe, allows topographic and thermal imaging of surfaces to be carried out and permits localized thermal analysis of materials. In order to estimate the effective volume of material thermally affected during this localized measurement, simulations, using finite element method were used. Several parameters and conditions were considered. So, thermal conductivity was found to be the driving physical parameter in thermal exchanges. Indeed, the evolution of the heat affected zone (HAZ) versus thermal conductivity can well be described by a linear interpolation. Therefore it is possible to estimate the HAZ before experimental measurements. This result is an important progress especially for accurate interphase characterization in heterogeneous materials. 展开更多
关键词 Micro-thermal analysis Localized thermal analysis Heat Affected Zone thermal Conductivity finite element Method
下载PDF
Analysis of Si/GaAs Bonding Stresses with the Finite Element Method
13
作者 何国荣 杨国华 +5 位作者 郑婉华 吴旭明 王小东 曹玉莲 王青 陈良惠 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第11期1906-1910,共5页
In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stres... In conjunction with ANSYS,we use the finite element method to analyze the bonding stresses of Si/ GaAs. We also apply a numerical model to investigate a contour map and the distribution of normal stress,shearing stress, and peeling stress, taking into full consideration the thermal expansion coefficient as a function of temperature. Novel bonding structures are proposed for reducing the effect of thermal stress as compared with conventional structures. Calculations show the validity of this new structure. 展开更多
关键词 BONDING thermal stress finite element analysis
下载PDF
Finite element analysis of stress distribution and burst failure of SiC_f/Ti-6Al-4V composite ring 被引量:2
14
作者 张红园 杨延清 罗贤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期261-270,共10页
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo... A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature. 展开更多
关键词 titanium-matrix composites RING stress distribution burst failure finite element analysis thermal residual stresses
下载PDF
Mechanical properties and finite element analysis of walnut under different cracking parts 被引量:4
15
作者 Hong Zhang Liuyang Shen +4 位作者 Haipeng Lan Yong Li Yang Liu Yurong Tang Wen Li 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第6期81-88,共8页
In order to reduce mechanical damage and improve extraction quality of walnut kernel during walnut cracking,the Wen-185 walnut cultivar was selected as the research object,and the mechanical properties of walnut under... In order to reduce mechanical damage and improve extraction quality of walnut kernel during walnut cracking,the Wen-185 walnut cultivar was selected as the research object,and the mechanical properties of walnut under different cracking parts were assessed by combining compression tests and finite element analysis(FEA)method.The compression test results showed that the relationships between rupture force and deformation of walnut were nonlinear,and the cracking process of shell mainly consisted of three stages(elastic stage,plastic stage and composite elastic-plastic stage).The best method to crack walnut was the spherical compression,and the peak value of rupture force and corresponding deformation were 211.83 N and 1.68 mm,respectively.In condition of spherical compression,the shell-breaking rate,first-grade kernel rate and whole kernel rate were(91.67±2.89)%,(88.33±2.89)%,(80.00±5.00)%,respectively.The FEA results indicated that spherical compression was also the suitable way to rupture walnut,which resulted in the obvious propagation trends of shell cracks and further a better integrity of extracting walnut kernel.Therefore,the spherical contact form between walnut and cracking parts may be considered to design the structural shape of key components of walnut cracking machines,which was consistent with the analysis of compression test results.The comparison between experiment results and FEA results showed that the established FEA model can be used to analyze the mechanical properties of walnut.The research results can provide references for the structural design and optimization of key components of cracking machines for walnut or other nut crops. 展开更多
关键词 WALNUT mechanical damage compression tests mechanical properties finite element analysis
原文传递
Analysis of Thermal Characteristics for a High Speed Motorized Spindle Based on the ANSYS Workbench 被引量:2
16
作者 GONG Li-qin JIA Yu-qin +1 位作者 CHENG Jie-jie HE Shuai 《International Journal of Plant Engineering and Management》 2013年第2期96-104,共9页
The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istic... The high-speed motorized spindle, as the key component of machining centers and other high-end CNC machine tools, has performance directly affecting machining accuracy. According to the internal motor character- istics of the high speed motorized spindle in the paper, two major heat sources are analyzed and quantity of heat is calculated. The finite element analysis model of motorized spindle thermal characteristics is built through ap- plying the ANSYS Workbench. The thermal steady state, heat-structure coupling characteristics is carried out based on the cooling coefficient of thermal boundary conditions, and taking heating value of the bearing and mo- tor as thermal load, the temperature field distribution and thermal deformation of the spindle system are obtained, which prepare fox" the next thermal error modeling 展开更多
关键词 motorized spindle thermal characteristics finite element analysis
下载PDF
Parametric Analysis of Tensile Properties of Bimodal Al Alloys by Finite Element Method
17
作者 W.L. Zhang S. Li S.R. Nutt 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第2期281-288,共8页
An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensi... An axisymmetrical unit cell model was used to represent a bimodal Al alloy that was composed of both nano-grained (NG) and coarse-grained (CG) aluminum. Effects of microstructural and materials parameters on tensile properties of bimodal AI alloy were investigated by finite element method (FEM). The parameters analyzed included aspect ratios of CG Al and the unit cell, volume fraction of CG Al (VFCG), and yield strength and strain hardening exponent of CG Al. Aspect ratios of CG Al and the unit cell have no significant influence on tensile stress-strain response of the bimodal Al alloy. This phenomenon derives from the similarity in elastic modulus and coefficient of thermal expansion between CG AI and NG Al. Conversely, tensile properties of bimodal Al alloy are extremely sensitive to VFCG, yield strength and strain hardening exponent of CG Al. Specifically, as VFCG increases, both yield strength and ultimate tensile strength (UTS) of the bimodal Al alloy decreases, while uniform strain of bimodal AI alloy increases. In addition, an increase in yield strength of CG Al results in an increase in both yield stress and UTS of bimodal AI alloy and a decrease in uniform strain of bimodal Al alloy. The lower capability in lowering the increase of stress concentration in NG Al due to a higher yield strength of CG Al causes the lower uniform strain of the bimodal AI alloy. When strain hardening exponent of CG Al increases, 0.2% yield stress, UTS, and uniform strain of the bimodal Al alloy increases. This can be attributed to the increased work-hardening ability of CG Al with a higher strain hardening exponent. 展开更多
关键词 NANOMATERIALS Bimodal alloys finite element method Tensile properties Parametric analysis
下载PDF
Mapping relationship analysis of welding assembly properties for thin-walled parts with finite element and machine learning algorithm
18
作者 Pan Minghui Liao Wenhe +1 位作者 Xing Yan Tang Wencheng 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期126-136,共11页
The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The ... The finite element(FE)-based simulation of welding characteristics was carried out to explore the relationship among welding assembly properties for the parallel T-shaped thin-walled parts of an antenna structure.The effects of welding direction,clamping,fixture release time,fixed constraints,and welding sequences on these properties were analyzed,and the mapping relationship among welding characteristics was thoroughly examined.Different machine learning algorithms,including the generalized regression neural network(GRNN),wavelet neural network(WNN),and fuzzy neural network(FNN),are used to predict the multiple welding properties of thin-walled parts to mirror their variation trend and verify the correctness of the mapping relationship.Compared with those from GRNN and WNN,the maximum mean relative errors for the predicted values of deformation,temperature,and residual stress with FNN were less than 4.8%,1.4%,and 4.4%,respectively.These results indicate that FNN generated the best predicted welding characteristics.Analysis under various welding conditions also shows a mapping relationship among welding deformation,temperature,and residual stress over a period of time.This finding further provides a paramount basis for the control of welding assembly errors of an antenna structure in the future. 展开更多
关键词 parallel T-shaped thin-walled parts welding assembly property finite element analysis mapping relationship machine learning algorithm
下载PDF
Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling 被引量:13
19
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2783-2791,共9页
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur... The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well. 展开更多
关键词 finite element method brake disk co-continuous SiC/6061 composite thermal analysis airflow cool
下载PDF
Optimization of Material Coefficients in the Holzapfel-Gasser-Ogden Material Model for the Main Four Ligaments of the Knee Joint-A Finite Element Study
20
作者 Sara Sadeqi Rodney Summers +1 位作者 Deniz U. Erbulut Vijay K. Goel 《Applied Mathematics》 2021年第12期1166-1188,共23页
Accurate representation of soft tissue material properties plays a crucial role in computational biomechanics. Several material models have been used for knee ligaments in finite element (FE) studies, including the ne... Accurate representation of soft tissue material properties plays a crucial role in computational biomechanics. Several material models have been used for knee ligaments in finite element (FE) studies, including the neo-Hookean model (widely used) and the Holzapfel-Gasser-Ogden (HGO) model (seldom used). While the coefficients of neo-Hookean models for the knee ligaments are available in the literature, limited data exists for the HGO model. Furthermore, no peer-reviewed comparison of these two material models for the knee ligaments while including the 3D representation of the ligaments for both material models is present in the literature. We used mechanical properties from the tensile test experiments in the literature for each ligament to obtain the HGO material coefficients while accounting for the ligaments’ viscoelastic behavior. Resultant coefficients were then used in an Abaqus/explicit knee model to simulate bipedal landing from a jump. The simulations were repeated with neo-Hookean values from the literature. Knee kinematics plus ACL and MCL strains were evaluated and compared for these two material models. The outputs from the simulations with HGO properties were predominantly within 1.5 standard deviations from the mean in-vitro data. When the material properties changed to Neo-Hookean, the outputs for kinematics and strain values were higher than the HGO case, and in most instances, they were outside the experimental range for ACL and MCL strains (by up to 11.35 SD) as well as some ITR angles (by up to 2.86 SD). Reported HGO material model with optimized coefficients produces a more realistic representation of the ligaments’ material properties, and will help improve the outcomes of FE models for more accurate predictions of knee behavior. 展开更多
关键词 Soft Tissue Material Properties Holzapfel-Gasser-Ogden Constitutive Model Dynamic finite element analysis Knee Ligaments
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部