期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Surface density of synthetically tuned spinel oxides of Co^(3+) and Ni^(3+) with enhanced catalytic activity for methane oxidation 被引量:4
1
作者 Zeshu Zhang Jingwei Li +5 位作者 Ting Yi Liwei Sun Yibo Zhang Xuefeng Hu Wenhao Cui Xiangguang Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1228-1239,共12页
Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClit... Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts. 展开更多
关键词 spinel oxides Catalytic combustion of methane Porous nanosheets Active center Hydrothermal stability
下载PDF
High-Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries 被引量:4
2
作者 Liyuan Tian Ze Zhang +2 位作者 Sheng Liu Guoran Li Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期645-654,共10页
The exploration of new catalytic hosts is highly important to tackle the sluggish electrochemical kinetics of sulfur redox for achieving high energy density of lithium–sulfur batteries.Herein,for the first time,we pr... The exploration of new catalytic hosts is highly important to tackle the sluggish electrochemical kinetics of sulfur redox for achieving high energy density of lithium–sulfur batteries.Herein,for the first time,we present high-entropy oxide(HEO,(Mg_(0.2)Mn_(0.2)Ni_(0.2)Co_(0.2)Zn_(0.2))Fe_(2)O_(4))nanofibers as catalytic host of sulfur.The HEO nanofibers show a synergistic effect among multiple metal cations in spinel structure that enables strong chemical confinement of soluble polysulfides and fast kinetics for polysulfide conversion.Consequently,the S/HEO composite displays the high gravimetric capacity of 1368.7 mAh g^(−1) at 0.1 C rate,excellent rate capability with the discharge capacity of 632.1 mAh g^(−1) at 5 C rate,and desirable cycle stability.Furthermore,the S/HEO composite shows desirable sulfur utilization and good cycle stability under a harsh operating condition of high sulfur loading(4.6 mg cm^(−2))or low electrolyte/sulfur ratio(5μL mg^(−1)).More impressively,the high volumetric capacity of 2627.9 mAh cm^(−3) is achieved simultaneously for the S/HEO composite due to the high tap density of 1.92 g cm^(−3),nearly 2.5 times of the conventional sulfur/carbon composite.Therefore,based on high-entropy oxide materials,this work affords a fresh concept of elevating the gravimetric/volumetric capacities of sulfur cathodes for lithium–sulfur batteries. 展开更多
关键词 catalytic host high-entropy oxide lithium-sulfur battery polysulfide conversion spinel oxide nanofibers
下载PDF
Degenerate antiferromagnetic states in spinel oxide LiV2O4
3
作者 Ben-Chao Gong Huan-Cheng Yang +2 位作者 Kui Jin Kai Liu Zhong-Yi Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期542-547,共6页
The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations.We find that a series of magnetic states,in... The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations.We find that a series of magnetic states,in which the ferromagnetic(FM)V4 tetrahedra are linked together through the corner-sharing antiferromagnetic(AFM)V4 tetrahedra,possess degenerate energies lower than those of other spin configurations.The large number of these energetically degenerated states being the magnetic ground state give rise to strong magnetic frustration as well as large magnetic entropy in LiV2O4.The corresponding band structure and density of states of such a typical magnetic state in this series,i.e.,the ditetrahedron(DT)AFM state,demonstrate that LiV2O4 is in the vicinity of a metal-insulator transition.Further analysis suggests that the t2g and eg orbitals of the V atoms play different roles in the magnetic exchange interactions.Our calculations are consistent with previous experimental measurements and shed light on understanding the exotic magnetism and the heavy-fermion behavior of LiV2O4. 展开更多
关键词 spinel oxide magnetic properties heavy fermion first-principles calculations
下载PDF
Defect spinel oxides for electrocatalytic reduction reactions
4
作者 Zhijuan Liu Jinyu Guo +3 位作者 Lu-yu Liu Fen Wang Zhijie Kong Yanyong Wang 《Nano Research》 SCIE EI CSCD 2024年第5期3547-3570,共24页
Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology,which are emerging technologies to ameliorate environmental problems.Spinel oxides are widely explor... Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology,which are emerging technologies to ameliorate environmental problems.Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions,making their electrocatalytic ability less effective.To improve this,defect engineering is a valuable method for regulating the electronic structure and coordination environment.Herein,this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions,including the different types of defects,construction methods,and characterization techniques.It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions.Finally,it goes over the challenges and future outlooks for defect spinels.This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts. 展开更多
关键词 DEFECT spinel oxides electrochemical reduction reactions electrocatalytic mechanism dynamic evolution
原文传递
Unveiling the geometric site dependent activity of spinel Co_(3)O_(4)for electrocatalytic chlorine evolution reaction
5
作者 Linke Cai Yao Liu +5 位作者 Jingfang Zhang Qiqi Jia Jiacheng Guan Hongwei Sun Yu Yu Yi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期95-103,共9页
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal... Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level. 展开更多
关键词 Chlorine evolution reaction Geometry effects Active chlorine Electronic configuration optimization spinel oxides
下载PDF
Efficient spinel iron‐cobalt oxide/nitrogen‐doped ordered mesoporous carbon catalyst for rechargeable zinc‐air batteries 被引量:4
6
作者 He‐lei Wei Ai‐dong Tan +2 位作者 Shu‐zhi Hu Jin‐hua Piao Zhi‐yong Fu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1451-1458,共8页
A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that ... A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air. 展开更多
关键词 Oxygen‐related catalyst Oxygen evolution reaction Oxygen reduction reaction spinel oxide Zinc‐air battery
下载PDF
Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating
7
作者 韩玉君 朱志莹 +2 位作者 李晓泉 申赛刚 叶福兴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3305-3314,共10页
The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto... The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto the nickel-based superalloy substrate by high velocity oxygen fuel(HVOF).It suggests that the TGO usually consists of a great number of chromium oxides,cobalt oxides and spinel oxides besides alumina during the initial period of the high temperature oxidation if the specimens are not subjected to the appropriate vacuum pre-oxidation process.Furthermore,the amount of alumina is strongly dependent on the partial pressure of oxygen;while the CoCr2O4 spinel oxides are usually formed under the conditions of higher partial pressure of oxygen during the initial period and the lower partial pressure of oxygen during the subsequent period of the isothermal oxidation.After the appropriate vacuum pre-oxidation process,the TGO is mainly composed of alumina that contains lower Y element,while alumina that contains higher Y element sporadically distributes,and the spinel oxides cannot be found.After a longer period of the isothermal oxidation,a small amount of porous CoCr2O4 and the chrome oxide sporadically distribute near the continuous alumina.Additionally,after the appropriate vacuum pre-oxidation process,the TGO growth rate is relatively slow. 展开更多
关键词 vacuum pre-oxidation process thermally-grown oxides(TGO) high velocity oxygen fuel(HVOF) spinel oxides
下载PDF
Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation
8
作者 Shuairu Zhu Xue Wang +4 位作者 Jiabo Le Na An Jianming Li Deyu Liu Yongbo Kuang 《Energy & Environmental Materials》 SCIE EI CAS 2024年第2期152-160,共9页
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h... Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts. 展开更多
关键词 dual-sites iron electrocatalyst stability neutral electrolyte oxygen evolution reaction spinel oxides
下载PDF
3D hierarchically macro-/mesoporous graphene frameworks enriched with pyridinic-nitrogen-cobalt active sites as efficient reversible oxygen electrocatalysts for rechargeable zinc-air batteries 被引量:1
9
作者 Sheng Zhou Jiayi Qin +1 位作者 Xueru Zhao Jing Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期571-582,共12页
Efficient and affordable electrocatalysts for reversible oxygen reduction and oxygen evolution reactions(ORR and OER,respectively)are highly sought-after for use in rechargeable metal-air batteries.However,the constru... Efficient and affordable electrocatalysts for reversible oxygen reduction and oxygen evolution reactions(ORR and OER,respectively)are highly sought-after for use in rechargeable metal-air batteries.However,the construction of high-performance electrocatalysts that possess both largely accessible active sites and superior ORR/OER intrinsic activities is challenging.Herein,we report the design and successful preparation of a 3D hierarchically porous graphene framework with interconnected interlayer macropores and in-plane mesopores,enriched with pyridinic-nitrogen-cobalt(pyri-N-Co)active sites,namely,CoFe/3D-NLG.The pyri-N-Co bonding significantly accelerates sluggish oxygen electrocatalysis kinetics,in turn substantially improving the intrinsic ORR/OER activities per active site,while copious interlayer macropores and in-plane mesopores enable ultra-efficient mass transfer throughout the graphene architecture,thus ensuring sufficient exposure of accessible pyri-N-Co active sites to the reagents.Such a robust catalyst structure endows CoFe/3D-NLG with a remarkably enhanced reversible oxygen electrocatalysis performance,with the ORR half-wave potential identical to that of the benchmark Pt/C catalyst,and OER activity far surpassing that of the noble-metal-based RuO2 catalyst.Moreover,when employed as an air electrode for a rechargeable Zn-air battery,CoFe/3D-NLG manifests an exceedingly high open-circuit voltage(1.56 V),high peak power density(213 mW cm^(–2)),ultra-low charge/discharge voltage(0.63 V),and excellent charge/discharge cycling stability,outperforming state-of-the-art noble-metal electrocatalysts. 展开更多
关键词 Hierarchical pores Composite catalyst Oxygen electrocatalysis spinel oxide Rechargeable zinc-air battery
下载PDF
UV Laser Regulation of Surface Oxygen Vacancy of CoFe2O4 for Enhanced Oxygen Evolution Reaction 被引量:1
10
作者 Zhen-hong Xiao Dao-chuan Jiang +5 位作者 Han Xu Jing-tian Zhou Qi-zhong Zhang Ping-wu Du Zhen-lin Luo Chen Gao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第5期691-694,736,共5页
Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determinati... Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds. 展开更多
关键词 Oxygen evolution reaction spinel oxide Transition metal oxide Laser irradiation Oxygen vacancy
下载PDF
Coexistence of magnetic and ferroelectric properties in Y_(0.1)Co_(1.9) MnO_4
11
作者 刘毅 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期497-500,共4页
The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a l... The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K). Magnetisation as a function of field H (M H loop) indicated the weak ferromagnetism of the sample at room temperature. The constant e and dielectric loss tg5 measurements represent a ferroelectric phase transition at a higher temperature (~650 K), while the conductivity shows an insulator-metallic transition. The ferro- electric hysterisis loops and capacitance voltage measurements confirm the ferroelectric nature of the sample at room temperature. The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application. 展开更多
关键词 spinel oxide DIELECTRIC CONDUCTIVITY MAGNETIC
下载PDF
Effect of Pd doping on CH_4 reactivity over Co_3O_4 catalysts from density-functional theory calculations 被引量:5
12
作者 Chengcheng Zhao Yonghui Zhao +1 位作者 Shenggang Li Yuhan Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期813-820,共8页
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw... Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate. 展开更多
关键词 spinel cobalt oxide Palladium dopant Methane combustion Density function theory calculation Reaction rate Collision theory
下载PDF
Multi sites vs single site for catalytic combustion of methane over Co3O4(110):A first-principles kinetic Monte Carlo study 被引量:3
13
作者 Wende Hu Zheng-Jiang Shao +1 位作者 Xiao-Ming Cao P.Hu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1369-1377,共9页
Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete ... Single-atom catalysts have been applied in many processes recently.The difference of their kinetic behavior compared to the traditional heterogeneous catalysts has not been extensively discussed yet.Herein a complete catalytic cycle of CH4 combustion assuming to be confined at isolated single sites of the Co3O4(110)surface is computationally compared with that on multi sites.The macroscopic kinetic behaviors of CH4 combustion on Co3O4(110)is systematically and quantitatively compared between those on the single site and multi sites utilizing kinetic Monte Carlo simulations upon the energetic information from the PBE+U calculation and statistic mechanics.The key factors governing the kinetics of CH4 combustion are disclosed for both the catalytic cycles respectively following the single-site and multi-site mechanisms.It is found that cooperation of multi active sites can promote the activity of complete CH4 combustions substantially in comparison to separated single-site catalyst whereas the confinement of active sites could regulate the selectivity of CH4 oxidation.The quantitative understanding of catalytic mechanism paves the way to improve the activity and selectivity for CH4 oxidation. 展开更多
关键词 Methane combustion DFT Single atom catalyst Multi site Single site spinel cobalt oxides Kinetic Monte Carlo
下载PDF
Enhanced high temperature cycling performance of LiMn_2O_4/graphite cells with methylene methanedisulfonate(MMDS) as electrolyte additive and its acting mechanism 被引量:2
14
作者 Fengju Bian Zhongru Zhang Yong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期383-390,共8页
The effects of methylene methanedisulfonate(MMDS) on the high-temperature(0℃) cycle performance of LiMnO/graphite cells are investigated.By addition of 2 wt%MMDS into a routine electrolyte,the high-temperature cy... The effects of methylene methanedisulfonate(MMDS) on the high-temperature(0℃) cycle performance of LiMnO/graphite cells are investigated.By addition of 2 wt%MMDS into a routine electrolyte,the high-temperature cycling performance of LiMn204/graphite cells can be significantly improved.The analysis of differential capacity curves and energy-dispersive X-ray spectrometry(EDX) indicates that MMDS decomposed on both cathode and anode.The three-electrode system of pouch cell is used to reveal the capacity loss mechanism in the cells.It is shown that the capacity fading of cells without MMDS in the electrolytes is due to irreversible lithium consumption during cycling and irreversible damage of LiMnOmaterial,while the capacity fading of cell with 2 wt%MMDS in electrolytes mainly originated from irreversible lithium consumption during cycling. 展开更多
关键词 methylene methanedisulfonate(MMDS) spinel lithium manganese oxides electrolyte additives reference electrode acting mechanism
下载PDF
Improving Interfacial Electrochemistry of LiNi0.5Mn1.5O4 Cathode Coated by Mn3O4 被引量:2
15
作者 Miao-miao Deng Da-wei Zhang +3 位作者 Yu Shao Xiao-dong He Aqsa Yasmin Chun-hua Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第4期485-490,I0002,共7页
In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×1... In this work the surface of LiNi0.5Mn1.5O4(LMN)particles is modified by Mn3O4 coating through a simple wet grinding method,the electronic conductivity is significantly improved from 1.53×10^-7 S/cm to 3.15×10^-5 S/cm after 2.6 wt%Mn3O4 coating.The electrochemical test results indicate that Mn3O4 coating dramatically enhances both rate performance and cycling capability(at 55℃)of LNM.Among the samples,2.6 wt%Mn3O4-coated LNM not only exhibits excellent rate capability(a large capacity of 108 m Ah/g at 10 C rate)but also shows 78%capacity retention at 55 ℃ and 1 C rate after 100 cycles. 展开更多
关键词 Lithium-ion batteries Cathode materials spinel lithium nickel manganese oxide Surface modification Cathode-electrolyte interphase
下载PDF
Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages 被引量:4
16
作者 Hao Fan Lijun Yang +7 位作者 Yu Wang Xiali Zhang Qingsong Wu Renchao Che Meng Liu Qiang Wu Xizhang Wang Zheng Hu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第20期1365-1372,共8页
The unique hierarchical nitrogen-doped carbon nanocages(h NCNC) are used as a new support to homogeneously immobilize spinel Co Fe_2O_4 nanoparticles by a facile solvothermal method. The so-constructed hierarchical Co... The unique hierarchical nitrogen-doped carbon nanocages(h NCNC) are used as a new support to homogeneously immobilize spinel Co Fe_2O_4 nanoparticles by a facile solvothermal method. The so-constructed hierarchical Co Fe_2O_4/h NCNC catalyst exhibits a high oxygen reduction activity with an onset potential of0.966 V and half-wave potential of 0.819 V versus reversible hydrogen electrode, far superior to the corresponding 0.846 and 0.742 V for its counterpart of Co Fe_2O_4/h CNC with undoped hierarchical carbon nanocages(h CNC) as the support, which locates at the top level for spinel-based catalysts to date.Consequently, the Co Fe_2O_4/h NCNC displays the superior performance to the Co Fe_2O_4/h CNC, when used as the cathode catalysts in the home-made Al-air batteries. X-ray photoelectron spectroscopy characterizations reveal the more charge transfer from Co Fe_2O_4 to h NCNC than to h CNC, indicating the stronger interaction between Co Fe_2O_4 and h NCNC due to the nitrogen participation. The enhanced interaction and hierarchical morphology favor the high dispersion and modification of electronic states for the active species as well as the mass transport during the oxygen reduction process, which plays a significant role in boosting the electrocatalytic performances. In addition, we noticed the high sensitivity of O 1 s spectrum to the particle size and chemical environment for spinel oxides, which is used as an indicator to understand the evolution of ORR activities for all the Co Fe_2O_4-related contrast catalysts. Accordingly,the well-defined structure-performance relationship is demonstrated by the combination of experimental characterizations with theoretical calculations. This study provides a promising strategy to develop efficient, inexpensive and durable oxygen reduction electrocatalysts by tuning the interaction between spinel metal oxides and the carbon-based supports. 展开更多
关键词 Oxygen reduction electrocatalyst spinel cobalt ferrite oxide Hierarchical nitrogen-doped carbon NANOCAGES Strong interaction Structure-performance relationship Al-air battery
原文传递
Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells 被引量:2
17
作者 Qi Huang Shanshan Jiang +6 位作者 Yujia Wang Jingjing Jiang Yubo Chen Jiahuan Xu Hao Qiu Chao Su Daifen Chen 《Nano Research》 SCIE EI CSCD 2023年第7期9280-9288,共9页
Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by t... Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by the lack of durable and high-activity air electrodes.A lot number of cobalt-based oxides have been developed as air electrodes for PCFCs,due to their high oxygen reduction reaction(ORR)activity.However,cobalt-based oxides usually have more significant thermal expansion coefficients(TECs)and poor thermomechanical compatibility with electrolytes.These characteristics can lead to cell delamination and degradation.Herein,we rationally design a novel cobalt-containing composite cathode material with the nominal composition of Sr_(4)Fe_(4)Co_(2)O_(13)+δ(SFC).SFC is composed of tetragonal perovskite phase(Sr_(8)Fe_(8)O_(23)+δ,I4/mmm,81 wt.%)and spinel phase(Co_(3)O_(4),Fd3m,19 wt.%).The SFC composite cathode displays an ultra-high oxygen ionic conductivity(0.053 S·cm^(-1)at 550℃),superior CO_(2)tolerance,and suitable TEC value(17.01×10^(-6)K^(-1)).SFC has both the O_(2)^(-)/e^(-)conduction function,and the triple conducting(H^(+)/O_(2)^(-)/e^(-))capability was achieved by introducing the protonic conduction phase(BaZr_(0.2)Ce_(0.7)Y_(0.1)O_(3-δ),BZCY)to form SFC+BZCY(70 wt.%:30 wt.%).The SFC+BZCY composite electrode exhibits superior ORR activity at a reduced temperature with extremely low area-specific resistance(ASR,0.677Ω·cm^(2)at 550℃),profound peak power density(PPD,535 mW·cm^(-2)and 1.065 V at 550℃),extraordinarily long-term durability(>500 h for symmetrical cell and 350 h for single cell).Moreover,the composite has an ultra-low TEC value(15.96×10^(-6)K^(-1)).This study proves that SFC+BZCY with triple conducting capacity is an excellent cathode for low-temperature PCFCs. 展开更多
关键词 protonic ceramic fuel cells spinel oxide composition tuning triple-conducting
原文传递
Reforming of CH_4 with CO_2 over Co/Mg–Al oxide catalyst
18
作者 Wen-Jia Cai Lin-Ping Qian +2 位作者 Bin Yue Xue-Ying Chen He-Yong He 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第9期777-779,共3页
A series of Co/Mg-Al oxide samples, CoMgAl-x (x = (Mg + Co)]AI molar ratio of 1-5), were prepared by the self-combustion method followed by H2 reduction. The catalytic performance and stability of the samples wer... A series of Co/Mg-Al oxide samples, CoMgAl-x (x = (Mg + Co)]AI molar ratio of 1-5), were prepared by the self-combustion method followed by H2 reduction. The catalytic performance and stability of the samples were studied in dry reforming ofCH4. XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles. The spinel phases contained COB04 and ConMgl-nAl204 (0 〈 n 〈 1 ) varying with the (Mg + Co)/AI ratio, The effect of (Mg + Co)/A1 molar ratio on the catalytic behavior was investigated in detail and CoMgAI-3 exhibited the highest catalytic activity and stability among the catalysts studied. 展开更多
关键词 Dry reforming CH4 Cobalt spinel phase Mixed oxides
原文传递
NiB_(2)O_(4)(B=Mn or Co)catalysts for NH_(3)-SCR of NO_(x) at low-temperature in microwave field
19
作者 Liyun Song Shilin Deng +6 位作者 Chunyi Bian Cui Liu Zongcheng Zhan Shuangye Li Jian Li Xing Fan Hong He 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第8期57-67,共11页
Microwave-assisted selective catalytic reduction of nitrogen oxides(NOx)was investigated over Nibased metal oxides.The NiMn2O4 and NiCo_(2)O_(4) catalysts were synthesized by the co-precipitation method and their acti... Microwave-assisted selective catalytic reduction of nitrogen oxides(NOx)was investigated over Nibased metal oxides.The NiMn2O4 and NiCo_(2)O_(4) catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH_(3)-SCR in a microwave field.The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction(XRD),Scanning electron microscope(SEM),N_(2)-physisorption,NO adsorption-desorption in the microwave field,H2-temperature programmed reduction(H2-TPR)and NH3-temperature programmed desorption(NH_(3)-TPD).The results verified that microwave radiation reduced the reaction temperature required for NH_(3)-SCR compared to conventional heating,which needed less energy.For the NiMn_(2)O_(4) catalyst,the catalytic efficiency exceeded 90%at 70°C and reached 96.8%at 110°C in the microwave field.Meanwhile,the NiMn_(2)O_(4) also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions,which is due to the high BET specific surface area,more suitable redox property,good NO adsorption-desorption in the microwave field and rich acidic sites. 展开更多
关键词 Microwave field spinel oxides NO_(x) Selective catalytic reduction
原文传递
Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution 被引量:3
20
作者 Jiajia Shi Kaixiang Lei +3 位作者 Weiyi Sun Fujun Li Fangyi Cheng Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3836-3847,共12页
A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs).CMO QDs with average size of 2.0,3.9,and 5.4 nm were selectively obtained at 80,90,and ... A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs).CMO QDs with average size of 2.0,3.9,and 5.4 nm were selectively obtained at 80,90,and 105 ℃,respectively.The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship.The results revealed that the amount of surface-adsorbed oxygen and the band gap energy,which affect the charge transfer in the oxygen electrocatalysis processes,strongly depend on the size of the CMO QDs.The CMO-3.9/CNT hybrid,consisting of CNT-supported CMO QDs of 3.9 nm size,possesses a moderate amount of surfaceadsorbed oxygen,a lower band gap energy,and a larger charge carrier concentration,and exhibits the highest electrocatalytic activity among the hybrid materials investigated.Moreover,the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts,respectively,due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate;this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst.The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type,nonprecious metal oxides. 展开更多
关键词 size effect spinel oxide quantum dots ELECTROCATALYSIS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部