期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface modification and characterization of F-Co doped spinel LiMn_2O_4 被引量:1
1
作者 WATANABE Takayuki 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期33-38,共6页
Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and ... Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materials with modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃. 展开更多
关键词 lithium ion batteries spinel limn2o4 ion doping surface coating
下载PDF
Electrochemical properties of niobium and phosphate doped spherical Li-rich spinel LiMn2O4 synthesized by ion implantation method 被引量:2
2
作者 Wei Li Gao-Wa Siqin +2 位作者 Zhi Zhu Lu Qi Wen-Huai Tian 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第7期1438-1446,共9页
Spherical Li-rich lithium manganese oxide(LMO) spinel material was synthesized by an ion implanted method assisted by polyalcohol doped with Niobium and Phosphate simultaneously.The material was characterized by sca... Spherical Li-rich lithium manganese oxide(LMO) spinel material was synthesized by an ion implanted method assisted by polyalcohol doped with Niobium and Phosphate simultaneously.The material was characterized by scanning electron microscopy,X-ray diffraction and BET specific surface area analysis.The electrochemical performances were investigated with galvanostatic techniques and cyclic voltammetry.The synthesis process was investigated with TG/DSC.The results show that the lithium ion can be immersed into the pore of manganese dioxide at a low temperature with the ion implanted method.The prepared materials have a higher discharge capacity and better crystallization than those prepared by solid phase method.The doped Nb can improve the capacity of the Li-rich LMO spinel and reinforce the crystal growth along(111) and(400) planes.The crystal grains show circular and smooth morphology,which makes the specific surface area greatly decreased.Phosphate-doped LMO spinel exhibits good high-rate capacity and structure stability.The prepared Li(1.09)Mn(1.87)Nb(0.031)O(3.99)(PO4)(0.021)delivers a discharge capacity of 119mAhg^-1 at 0.2C(1C=148mAg^-1) and 112.8 mAhg^-1 at 10 C,the discharge capacity retention reaches 98% at 1 ℃ after 50 cycles at 25 ℃ and 94% at 55 ℃. 展开更多
关键词 spinels ion implantation li-ion batteries limn2o4 doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部