In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied b...The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.展开更多
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.
文摘The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger.In this research,the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation.It is observed that the tonal noise generated from the finned tube at two pitch spaces.The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27.The tone level increases and the frequency decreases with the pitch shorter.The separation flow from the cylinder generates the span-wise vortices,Karman vortices,and the separation flow from the fin generates the stream-wise vortices.When the fin pitch ratio is small,the stream-wise vortices line up to span-wise and become weak rapidly.Only the Karman vortices are remained and integrate in span.So the Karman vortex became large.This causes the low frequency and the large aeolian tone.