期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Diameters and form of skull base foramen ovale measured by three-dimensional spiral CT thin-slice scan in healthy adults
1
作者 Xiaohua Chen Fengxian Deng +1 位作者 Shuhang Wei Tingsong Fang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期343-346,共4页
BACKGROUND: The accurate measurements of various data of the bone diameters of foramen ovale of living person can change the methods of puncturing trigeminal gasserian ganglion via foramen ovale for treating trifacia... BACKGROUND: The accurate measurements of various data of the bone diameters of foramen ovale of living person can change the methods of puncturing trigeminal gasserian ganglion via foramen ovale for treating trifacial neuralgia from the experience of puncture operator only to puncture by taking the objective data of measurement as the evidence, which is good for improving the accuracy of puncturing trigeminal ganglion and reducing side effects. OBJECTIVE : To observe the forms of foramen ovales in healthy adults displayed by volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan of skull base, and measure the longitudinal diameter and transverse diameter. DESIGN : A repetitive observation and measurement SETTINGS : Department of Neurosurgery and Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine. PARTICIPANTS: Fifty healthy adults (100 sides), who were examined with three-dimensional spiral CT scan, were randomly selected from the Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine from January 2005 to January 2006, including 26 males and 24 females, aged 25-68 years with an average of 48 years old. They were all informed and agreed with the examination. METHODS : The subjects were examined with the Philips 16-slice spiral CT-Mx 8000 IDT CT apparatus (Philips Company, Holland), the scanning ranged from 2 cm below the canthomeatal line to the level of suprasellar cistem. The width of collimator was 0.75 mm, pitch was 0.663; tube current was 350 mA, voltage was 120 kV, resolution was 512×512 matrix; slice thickness of reconstruction was 1 mm, and interval was 0.5 mm. After the three-dimensional spiral CT thin-slice scan of skull base, the image post-processing techniques including volume rendering and multi-planar reconstruction were applied to observe the forms of foramen ovales, and measure the size, longitudinal diameter and transverse diameter of the foramen ovales. The figures of the foramen ovales were drawn with mouse along the boundary of bone porous margin and soft tissue. According to the indications, the diameters were measured with computer to observe the forms of foramen ovales. MAIN OUTCOME MEASURES : The longitudinal diameter, transverse diameter and form of foramen ovales were observed. RESULTS: All the 50 healthy adults (100 sides) were involved in the analysis of results. (1) It was observed in the volume rendering images that foramen ovales had four forms of oval shape (77 sides), kidney shape (12 sides), round shape (7 sides), ribbon shape (4 sides). (2) The longitudinal diameters of left and right foramen ovales were (7.67±1.32) and (7.98±1.45) mm, and the transverse diameters were (4.04±0.83), (4.09±1.07) mm; There was no obvious difference between left and right longitudinal diameters (t = 1.63, P = 0.11 ), and left and right transverse diameters were close (t = 0.45, P= 0.65). CONCLUSION : The non-invasive techniques of volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan can clearly display the formand size of foramen ovale in healthy adults. 展开更多
关键词 Diameters and form of skull base foramen ovale measured by three-dimensional spiral CT thin-slice scan in healthy adults CT base
下载PDF
Resolution enhancement of optical scanning holography with a spiral modulated point spread function 被引量:1
2
作者 Ni Chen Zhenbo Ren +1 位作者 Haiyan Ou Edmund Y.Lam 《Photonics Research》 SCIE EI 2016年第1期1-6,共6页
In optical scanning holography, one pupil produces a spherical wave and another produces a plane wave. They interfere with each other and result in a fringe pattern for scanning a three-dimensional object. The resolut... In optical scanning holography, one pupil produces a spherical wave and another produces a plane wave. They interfere with each other and result in a fringe pattern for scanning a three-dimensional object. The resolution of the hologram reconstruction is affected by the point spread function(PSF) of the optical system. In this paper, we modulate the PSF by a spiral phase plate, which significantly enhances the lateral and depth resolution. We explain the theory for such resolution enhancement and show simulation results to verify the efficacy of the approach. 展开更多
关键词 PSF Resolution enhancement of optical scanning holography with a spiral modulated point spread function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部