A series of microporous polyimide networks with porphyrin units (Pr-MPIs) were facilely synthesized through a one-step solution polymerization process. Of particular interest is that Pr-MPI-1 containing distorted sp...A series of microporous polyimide networks with porphyrin units (Pr-MPIs) were facilely synthesized through a one-step solution polymerization process. Of particular interest is that Pr-MPI-1 containing distorted spirobisindane unit revealed the highest BET surface area (953 m^2/g), total pore volume (0.75 cma/g), and extreme hysteresis between the N2 adsorption and desorption isotherm. Further study revealed the prepared Pr-MPI-1 exhibited a synergistic structural effect on exceptional uptake of volatile organic compounds (VOCs) due to the high porosity and highly distorted spirobisindane structure enabled large interface and the swellability. This new approach would open up a facile approach toward the preparation of highly swellable high performance polymeric microporous materials, which are deeply wanted for environment-related applications such as VOCs adsorption and oil/water separation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.20974069 and 21174089)the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)(No.K2013-23)
文摘A series of microporous polyimide networks with porphyrin units (Pr-MPIs) were facilely synthesized through a one-step solution polymerization process. Of particular interest is that Pr-MPI-1 containing distorted spirobisindane unit revealed the highest BET surface area (953 m^2/g), total pore volume (0.75 cma/g), and extreme hysteresis between the N2 adsorption and desorption isotherm. Further study revealed the prepared Pr-MPI-1 exhibited a synergistic structural effect on exceptional uptake of volatile organic compounds (VOCs) due to the high porosity and highly distorted spirobisindane structure enabled large interface and the swellability. This new approach would open up a facile approach toward the preparation of highly swellable high performance polymeric microporous materials, which are deeply wanted for environment-related applications such as VOCs adsorption and oil/water separation.