This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and ch...This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.展开更多
An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calcula...An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
The accurate modeling of depletion,intricately tied to the solution of the neutron transport equation,is crucial for the design,analysis,and licensing of nuclear reactors and their fuel cycles.This paper introduces a ...The accurate modeling of depletion,intricately tied to the solution of the neutron transport equation,is crucial for the design,analysis,and licensing of nuclear reactors and their fuel cycles.This paper introduces a novel multi-group Monte-Carlo depletion calculation approach.Multi-group cross-sections(MGXS)are derived from both 3D whole-core model and 2D fuel subassembly model using the continuous-energy Monte-Carlo method.Core calculations employ the multi-group Monte-Carlo method,accommodating both homogeneous and specific local heterogeneous geometries.The proposed method has been validated against the MET-1000 metal-fueled fast reactors,using both the OECD/NEA benchmark and a new refueling benchmark introduced in this paper.Our findings suggest that microscopic MGXS,produced via the Monte-Carlo method,are viable for fast reactor depletion analyses.Furthermore,the locally heterogeneous model with angular-dependent MGXS offers robust predictions for core reactivity,control rod value,sodium void value,Doppler constants,power distribution,and concentration levels.展开更多
Despite the diverse roles of tripartite motif(Trim)-containing proteins in the regulation of autophagy,the innate immune response,and cell differentiation,their roles in skeletal diseases are largely unknown.We recent...Despite the diverse roles of tripartite motif(Trim)-containing proteins in the regulation of autophagy,the innate immune response,and cell differentiation,their roles in skeletal diseases are largely unknown.We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast(OB)differentiation in osteosarcoma.However,how Trim21 contributes to skeletal degenerative disorders,including osteoporosis,remains unknown.First,human and mouse bone specimens were evaluated,and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients.Next,we found that global knockout of the Trim21 gene(KO,Trim2^(1-/-))resulted in higher bone mass compared to that of the control littermates.We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and elevating the activity of OBs;moreover,Trim21 depletion suppressed osteoclast(OC)formation of RAW264.7 cells.In addition,the differentiation of OCs from bone marrow-derived macrophages(BMMs)isolated from Trim21^(-/-)and Ctsk-cre;Trim21^(f/f)mice was largely compromised compared to that of the littermate control mice.Mechanistically,YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs.More importantly,the loss of Trim21 prevented ovariectomy(OVX)-and lipopolysaccharide(LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling.Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption,thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
Single-species management ignores the interactions between species,and ecosystem-based fisheries management(EBFM)has become a main method to fisheries management.Understanding food web structures and species interacti...Single-species management ignores the interactions between species,and ecosystem-based fisheries management(EBFM)has become a main method to fisheries management.Understanding food web structures and species interactions is essential for the implementation of EBFM and maintenance of ecosystem functions.Overfishing is one of the main reasons behind the depletion,which could even lead to the depletion of some target species in local areas.So understanding the impacts of species depletion on food web structures is important for the implementation of EBFM.The impacts of species depletion can be transmitted through the food web and cause the local extinction of both target and non-target species.In this study,topological network analysis was applied to examine the impacts of species depletion on the food web structure of Haizhou Bay.Results showed that fine crayfish Leptochela gracilis,squid Loligo sp.,and Japanese snapping shrimp Alpheus japonicus have the highest numbers of outgoing links(48,32 and 31 respectively);thus,these species may be considered key prey species.Whitespotted conger Conger myriaster,fat greenling Hexagrammos otakii,and bluefin gurnard Chelidonichthys kumu were key predators with the highest number of incoming links(37,36 and 35 respectively).The competition graphs derived from the Haizhou Bay food web were highly connected(more than 40%predators sharing over 10 common prey species),and showed close trophic interaction between high trophic level fishes.Simulation analysis showed that the food web structure has small changes to the depletion of species in a highly complex food web.The most-connected target species did not necessarily indicate high structural importance;however,some species with low connectivity may demonstrate stronger trophic interactions and play important ecological roles in the food web.But most species were more sensitive to the depletion of the most-connected target species than other target species(for instance,for zooplankton,closeness centrality 13.876 in D6,but closeness centrality 82.143 in original food web).Therefore,EBFM should focus on the most-connected target species,but also on those species with few but strong links and feeding relationships in the food web.展开更多
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s...To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting su...The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.展开更多
The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage i...The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage is observed.The nonlinearity is also explained on the basis of the assumption that the double-capacity model consists of two δ-doped two-dimensional electron layers and a metallic gate,and the experimental result that the electron mobility is linear with the electron density on a log-log scale.展开更多
AIM: To compare iron depletion to lifestyle changes alone in patients with severe nonalcoholic fatty liver disease (NAFLD) and hyperferritinemia, a frequent feature associated with more severe liver damage, despite at...AIM: To compare iron depletion to lifestyle changes alone in patients with severe nonalcoholic fatty liver disease (NAFLD) and hyperferritinemia, a frequent feature associated with more severe liver damage, despite at least 6 mo of lifestyle changes.展开更多
Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate th...Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period.展开更多
The depletion interaction between a big sphere and a hard wall and between two big hard spheres in a hard sphere colloidal sytem was studied by the Monte Carlo method. Direct simulation of free energy difference was p...The depletion interaction between a big sphere and a hard wall and between two big hard spheres in a hard sphere colloidal sytem was studied by the Monte Carlo method. Direct simulation of free energy difference was performed by means of the Acceptance Ratio Method (ARM).展开更多
THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric fiel...THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.展开更多
The depletion interactions between two large-spheres immersed in a fluid of small spheres under unsymmetrical geometrical confinement are studied through the acceptance ratio method. The numerical results show that no...The depletion interactions between two large-spheres immersed in a fluid of small spheres under unsymmetrical geometrical confinement are studied through the acceptance ratio method. The numerical results show that no matter whether the volume fraction is large or small, both the depletion potential and depletion force are affected by the presence of the two plates; the closer the two large spheres are to the plate, the larger the effects of the unsymmetrical confinements.展开更多
In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root prolifer...In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root proliferation into that enriched zones occupied by other plants constitutes interplant overlapping rooting zones and thereby the overlapping depletion zones, causing reduction in resource uptake by neighboring plants. By incorporating this mechanism into the classic resource competition model, we study interplant direct competition through their rooting system in an overlapping depletion zone. The model results indicate an extension of Tilman’s R* rule that has already been proved true when plants compete indirectly through their effect on shared resources. The results reveal that plant’s direct competitive ability (i.e., the ability to occupy an overlapping depletion zone by excluding others) can be characterized by its R*-value, where a best competitor having lowest R*-value excludes others from an overlapping zone and occupies the zone by depleting the resource level to the lowest as in its non-overlapping depletion zone. By analyzing the model, we find a suite of traits that confers R* variation among directly competing plants. This suite of traits would be a useful proxy measure for R* that do not necessarily require to establish equilibrium field monoculture—a requirement for R* measurement in the field.展开更多
Astrocytes and astrocyte-related proteins play important roles in maintaining normal brain function,and also regulate pathological processes in brain diseases and injury.However,the role of astrocytes in the dopamine-...Astrocytes and astrocyte-related proteins play important roles in maintaining normal brain function,and also regulate pathological processes in brain diseases and injury.However,the role of astrocytes in the dopamine-depleted striatum remains unclear.A rat model of Parkinson’s disease was therefore established by injecting 10μL 6-hydroxydopamine(2.5μg/μL)into the right medial forebrain bundle.Immunohistochemical staining was used to detect the immunoreactivity of glial fibrillary acidic protein(GFAP),calcium-binding protein B(S100B),and signal transducer and activator of transcription 3(STAT3)in the striatum,and to investigate the co-expression of GFAP with S100B and STAT3.Western blot assay was used to measure the protein expression of GFAP,S100B,and STAT3 in the striatum.Results demonstrated that striatal GFAP-immunoreactive cells had an astrocytic appearance under normal conditions,but that dopamine depletion induced a reactive phenotype with obvious morphological changes.The normal striatum also contained S100B and STAT3 expression.S100B-immunoreactive cells were uniform in the striatum,with round bodies and sparse,thin processes.STAT3-immunoreactive cells presented round cell bodies with sparse processes,or were darkly stained with a large cell body.Dopamine deprivation induced by 6-hydroxydopamine significantly enhanced the immunohistochemical positive reaction of S100B and STAT3.Normal striatal astrocytes expressed both S100B and STAT3.Striatal dopamine deprivation increased the number of GFAP/S100B and GFAP/STAT3 double-labeled cells,and increased the protein levels of GFAP,S100B,and STAT3.The present results suggest that morphological changes in astrocytes and changes in expression levels of astrocyte-related proteins are involved in the pathological process of striatal dopamine depletion.The study was approved by Animal Care and Use Committee of Sun Yat-sen University,China(Zhongshan Medical Ethics 2014 No.23)on September 22,2014.展开更多
Ozone (O3) is a stratospheric layer that plays important role in providing support to humans for their survival. It is an essential factor for many global, biological and environmental phenomena. The ultra-violet (UV)...Ozone (O3) is a stratospheric layer that plays important role in providing support to humans for their survival. It is an essential factor for many global, biological and environmental phenomena. The ultra-violet (UV) rays emitted from sun are captured by ozone and thereby provide a stable ontological structure in the biosphere. Various anthropogenic activities such as emissions of CFCs, HCFCs and other organo-halogens lead to the depletion of ozone. The ozone depletion resulted in secondary production of an ozone layer near the ground (terrestrial ozone layer), which is responsible for adverse effects on plants, humans and environment with increased number of bronchial diseases in humans. The mutations caused by UV rays result in variation in morphogenic traits of plants which ultimately decreases crop productivity. However, UV radiation is required in optimum intensity for both plants and animals. This review takes into an account the wide ranging effects of ozone depletion with a majority of them being detrimental to the plant system.展开更多
Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of inf...Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.展开更多
文摘This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.
基金supported by the Fundamental Research Funds for Central Universities,China(No.N2025004)the National Natural Science Foundation of China(Nos.U2102213,U1702253,52204419)+2 种基金Major Science and Technology Project of Liaoning Province,China(No.2021JH1/10400032)Major Science and Technology Project of Guangxi Province,China(No.2021AA12013)Liaoning Natural Science Foundation,China(No.2022-BS-076)。
文摘An interphase migration and enrichment model of lead and zinc during molten copper slag depletion was established.The occurrence of various components in copper slag was predicted using sulfur-oxygen potential calculations and confirmed through high-temperature experiments.The recovery rate of copper can reach 90.13%under the optimal conditions of 1200°C,an iron to silicon mass ratio of 1.0,3 wt.%ferrous sulfide,and a duration of 45 min.Lead(54.07 wt.%)and zinc(17.42 wt.%)are found in the flue dust as lead sulfate,lead sulfide,and zinc oxide,while copper matte contains lead(14.44 wt.%)and zinc sulfide(1.29 wt.%).The remaining lead and zinc are encapsulated as oxides within the fayalite phase.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
基金supported by the National Natural Science Foundation of China(Nos.12105170,12135008)Science and Technology on Reactor System Design Technology Laboratory.
文摘The accurate modeling of depletion,intricately tied to the solution of the neutron transport equation,is crucial for the design,analysis,and licensing of nuclear reactors and their fuel cycles.This paper introduces a novel multi-group Monte-Carlo depletion calculation approach.Multi-group cross-sections(MGXS)are derived from both 3D whole-core model and 2D fuel subassembly model using the continuous-energy Monte-Carlo method.Core calculations employ the multi-group Monte-Carlo method,accommodating both homogeneous and specific local heterogeneous geometries.The proposed method has been validated against the MET-1000 metal-fueled fast reactors,using both the OECD/NEA benchmark and a new refueling benchmark introduced in this paper.Our findings suggest that microscopic MGXS,produced via the Monte-Carlo method,are viable for fast reactor depletion analyses.Furthermore,the locally heterogeneous model with angular-dependent MGXS offers robust predictions for core reactivity,control rod value,sodium void value,Doppler constants,power distribution,and concentration levels.
基金supported by the Natural Science Foundation with grants from the National Key R&D Program of China(2018YFC2002500)National Natural Science Foundation of China(81602360,82072470,82350003,92049201)+6 种基金Key Laboratory Construction Project of Guangzhou Science and Technology Bureau(202102100007)supported by the Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University,China(No.JNU1AF-CFTP-2022-a01221)Natural Science Foundation of Guangdong Province(2021A1515012154,2019A1515011082,2017A030313665,2018A030313544,2020B1515120038)Science and Technology Projects in Guangzhou(201707010493,202102010069)Macao Foundation for Development of Science and Technology(0029/2019/A)Youth Talent Support Project of Guangzhou Association for Science&Technology(X20200301018)pilot project of clinical collaboration from National Administration of Traditional Chinese Medicine and National Health Commission of the People’s Republic of China and Logistics Support Department of the Central Military Commission。
文摘Despite the diverse roles of tripartite motif(Trim)-containing proteins in the regulation of autophagy,the innate immune response,and cell differentiation,their roles in skeletal diseases are largely unknown.We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast(OB)differentiation in osteosarcoma.However,how Trim21 contributes to skeletal degenerative disorders,including osteoporosis,remains unknown.First,human and mouse bone specimens were evaluated,and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients.Next,we found that global knockout of the Trim21 gene(KO,Trim2^(1-/-))resulted in higher bone mass compared to that of the control littermates.We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)and elevating the activity of OBs;moreover,Trim21 depletion suppressed osteoclast(OC)formation of RAW264.7 cells.In addition,the differentiation of OCs from bone marrow-derived macrophages(BMMs)isolated from Trim21^(-/-)and Ctsk-cre;Trim21^(f/f)mice was largely compromised compared to that of the littermate control mice.Mechanistically,YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs.More importantly,the loss of Trim21 prevented ovariectomy(OVX)-and lipopolysaccharide(LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling.Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption,thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金The National Key R&D Program of China under contract No.2018YFD0900904the National Natural Science Foundation of China under contract Nos 31772852 and 31802301。
文摘Single-species management ignores the interactions between species,and ecosystem-based fisheries management(EBFM)has become a main method to fisheries management.Understanding food web structures and species interactions is essential for the implementation of EBFM and maintenance of ecosystem functions.Overfishing is one of the main reasons behind the depletion,which could even lead to the depletion of some target species in local areas.So understanding the impacts of species depletion on food web structures is important for the implementation of EBFM.The impacts of species depletion can be transmitted through the food web and cause the local extinction of both target and non-target species.In this study,topological network analysis was applied to examine the impacts of species depletion on the food web structure of Haizhou Bay.Results showed that fine crayfish Leptochela gracilis,squid Loligo sp.,and Japanese snapping shrimp Alpheus japonicus have the highest numbers of outgoing links(48,32 and 31 respectively);thus,these species may be considered key prey species.Whitespotted conger Conger myriaster,fat greenling Hexagrammos otakii,and bluefin gurnard Chelidonichthys kumu were key predators with the highest number of incoming links(37,36 and 35 respectively).The competition graphs derived from the Haizhou Bay food web were highly connected(more than 40%predators sharing over 10 common prey species),and showed close trophic interaction between high trophic level fishes.Simulation analysis showed that the food web structure has small changes to the depletion of species in a highly complex food web.The most-connected target species did not necessarily indicate high structural importance;however,some species with low connectivity may demonstrate stronger trophic interactions and play important ecological roles in the food web.But most species were more sensitive to the depletion of the most-connected target species than other target species(for instance,for zooplankton,closeness centrality 13.876 in D6,but closeness centrality 82.143 in original food web).Therefore,EBFM should focus on the most-connected target species,but also on those species with few but strong links and feeding relationships in the food web.
基金This work is funded by National Natural Science Foundation of China(Nos.42202292,42141011)the Program for Jilin University(JLU)Science and Technology Innovative Research Team(No.2019TD-35).The authors would also like to thank the reviewers and editors whose critical comments are very helpful in preparing this article.
文摘To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
文摘The depletion of the ozone layer, a vital shield protecting the Earth from harmful ultraviolet (UV) radiation, is now a worldwide environmental concern. Human activities, particularly the release of ozone depleting substances (ODS), have led to the thinning of this protective layer over recent decades. Simultaneously, illegal trade has emerged as a global challenge, giving rise to economic issues, losses of tax revenue, heightened criminal activities, health risks, and environmental hazards. The depletion of the ozone layer, a critical shield protecting the Earth from harmful ultraviolet (UV) radiation, has become a global environmental concern. This paper delves into the legal dimensions surrounding ozone-depleting substances (ODS), their impact on the ozone layer, and the subsequent risk of skin cancer. As countries navigate international agreements, domestic regulations, and enforcement mechanisms, the intricate interplay between legal frameworks and the health implications of ozone layer depletion comes to the forefront. The paper highlights particular instances of illegal trade in ozone depleting substances, drawing from data reported by the parties to the Montreal Protocol. Notably, China stands out as a significant source of contraband ODS, with other countries such as Bulgaria, Lithuania, Poland, and France reporting numerous cases. Analyzing these case instances offers insights into the efficacy of legal frameworks and enforcement measures. The paper offers a comprehensive set of recommendations to strengthen global control and enforcement against the illegal trade of ozone depleting substances. These recommendations span diverse aspects such as production monitoring, customs collaboration, mutual verification, cross-border agreements, public-private partnerships, international cooperation, detection equipment, global regulatory standards, resource allocation, public awareness campaigns, alternative substance development, and controlling the trade at its source. By applying these recommendations and enhancing enforcement measures, we aim to protect the ozone layer and create a healthier and safer world for future generations and achieve sustainable development goals.
文摘The low-temperature measurement of Hall effect of the two-dimensional electron system in a double-layered gated Si-δ-doped GaAs is presented.A complex peculiar nonlinear dependence of the depletion on gate voltage is observed.The nonlinearity is also explained on the basis of the assumption that the double-capacity model consists of two δ-doped two-dimensional electron layers and a metallic gate,and the experimental result that the electron mobility is linear with the electron density on a log-log scale.
基金Supported by Associazione Malattie Metaboliche del Fegato ONLUS(Non-profit organization for the Study and Care of Metabolic Liver Diseases),Centro Studi Malattie Metaboliche del Fegato,Universitàdegli Studi di Milano
文摘AIM: To compare iron depletion to lifestyle changes alone in patients with severe nonalcoholic fatty liver disease (NAFLD) and hyperferritinemia, a frequent feature associated with more severe liver damage, despite at least 6 mo of lifestyle changes.
基金supported by National Natural Science Foundation of China (Grant Nos. 40575019, 40730949)the U.K. Natural Environ-ment Research Council (NERC)
文摘Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period.
基金National Natural Science Foundation of China ( No.1982 5 113No.198470 0 3) and F und from Shanghai Science and Technology Committee
文摘The depletion interaction between a big sphere and a hard wall and between two big hard spheres in a hard sphere colloidal sytem was studied by the Monte Carlo method. Direct simulation of free energy difference was performed by means of the Acceptance Ratio Method (ARM).
基金the National Natural Science Foundation of China (496742 4140 0 740 3 9) and the Research Fund forthe Doctoral Program of Higher Education in China
文摘THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375024) and the Science Foundation of Hunan Educational Committee, China
文摘The depletion interactions between two large-spheres immersed in a fluid of small spheres under unsymmetrical geometrical confinement are studied through the acceptance ratio method. The numerical results show that no matter whether the volume fraction is large or small, both the depletion potential and depletion force are affected by the presence of the two plates; the closer the two large spheres are to the plate, the larger the effects of the unsymmetrical confinements.
基金supported by the U.S.National Science Foundation’s Biocomplexity Program (DEB-0421530)LTER Program (DEB0620482)
文摘In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root proliferation into that enriched zones occupied by other plants constitutes interplant overlapping rooting zones and thereby the overlapping depletion zones, causing reduction in resource uptake by neighboring plants. By incorporating this mechanism into the classic resource competition model, we study interplant direct competition through their rooting system in an overlapping depletion zone. The model results indicate an extension of Tilman’s R* rule that has already been proved true when plants compete indirectly through their effect on shared resources. The results reveal that plant’s direct competitive ability (i.e., the ability to occupy an overlapping depletion zone by excluding others) can be characterized by its R*-value, where a best competitor having lowest R*-value excludes others from an overlapping zone and occupies the zone by depleting the resource level to the lowest as in its non-overlapping depletion zone. By analyzing the model, we find a suite of traits that confers R* variation among directly competing plants. This suite of traits would be a useful proxy measure for R* that do not necessarily require to establish equilibrium field monoculture—a requirement for R* measurement in the field.
基金supported by the National Natural Science Foundation of China,No.81471288(to WLL)the National High Technology Research and Development Program of China(863 Program),No.2017YFA0104704(to WLL)
文摘Astrocytes and astrocyte-related proteins play important roles in maintaining normal brain function,and also regulate pathological processes in brain diseases and injury.However,the role of astrocytes in the dopamine-depleted striatum remains unclear.A rat model of Parkinson’s disease was therefore established by injecting 10μL 6-hydroxydopamine(2.5μg/μL)into the right medial forebrain bundle.Immunohistochemical staining was used to detect the immunoreactivity of glial fibrillary acidic protein(GFAP),calcium-binding protein B(S100B),and signal transducer and activator of transcription 3(STAT3)in the striatum,and to investigate the co-expression of GFAP with S100B and STAT3.Western blot assay was used to measure the protein expression of GFAP,S100B,and STAT3 in the striatum.Results demonstrated that striatal GFAP-immunoreactive cells had an astrocytic appearance under normal conditions,but that dopamine depletion induced a reactive phenotype with obvious morphological changes.The normal striatum also contained S100B and STAT3 expression.S100B-immunoreactive cells were uniform in the striatum,with round bodies and sparse,thin processes.STAT3-immunoreactive cells presented round cell bodies with sparse processes,or were darkly stained with a large cell body.Dopamine deprivation induced by 6-hydroxydopamine significantly enhanced the immunohistochemical positive reaction of S100B and STAT3.Normal striatal astrocytes expressed both S100B and STAT3.Striatal dopamine deprivation increased the number of GFAP/S100B and GFAP/STAT3 double-labeled cells,and increased the protein levels of GFAP,S100B,and STAT3.The present results suggest that morphological changes in astrocytes and changes in expression levels of astrocyte-related proteins are involved in the pathological process of striatal dopamine depletion.The study was approved by Animal Care and Use Committee of Sun Yat-sen University,China(Zhongshan Medical Ethics 2014 No.23)on September 22,2014.
文摘Ozone (O3) is a stratospheric layer that plays important role in providing support to humans for their survival. It is an essential factor for many global, biological and environmental phenomena. The ultra-violet (UV) rays emitted from sun are captured by ozone and thereby provide a stable ontological structure in the biosphere. Various anthropogenic activities such as emissions of CFCs, HCFCs and other organo-halogens lead to the depletion of ozone. The ozone depletion resulted in secondary production of an ozone layer near the ground (terrestrial ozone layer), which is responsible for adverse effects on plants, humans and environment with increased number of bronchial diseases in humans. The mutations caused by UV rays result in variation in morphogenic traits of plants which ultimately decreases crop productivity. However, UV radiation is required in optimum intensity for both plants and animals. This review takes into an account the wide ranging effects of ozone depletion with a majority of them being detrimental to the plant system.
基金the support provided by the Scientific Research and Technology Development Project of CNPC(Grant No.kt2017-19-01-1)the National Natural Science Foundation of China(Grant No.41772286,No.42077247 and No.42002271)+2 种基金Petro China Innovation Foundation(Grant No.2018D-5007-0202)Project funded by China Postdoctoral Science Foundation(Grant No.2021T140514)Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020009)。
文摘Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.