We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the u...We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval.Using an extension of the analysis of Douglas and Dupont[23]for Dirichlet boundary conditions,we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space.We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROWfor solving almost block diagonal linear systems.We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena.展开更多
The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogona...The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogonal spline collocation(OSC)for discretization in space we not only obtain the global solution efficiently but the discretization error with respect to space variables can be of an arbitrarily high order.In[2],we used a Crank Nicolson ADI OSC method for solving general nonlinear parabolic problems with Robin’s boundary conditions on rectangular polygons and demonstrated numerically the accuracy in various norms.A natural question that arises is:Does this method have an extension to non-rectangular regions?In this paper,we present a simple idea of how the ADI OSC technique can be extended to some such regions.Our approach depends on the transfer of Dirichlet boundary conditions in the solution of a two-point boundary value problem(TPBVP).We illustrate our idea for the solution of the heat equation on the unit disc using piecewise Hermite cubics.展开更多
The computational approach for solving the Faddeev-Merkuriev equations in total orbitalmomentum representation is presented.These equations describe a systemof three quantumcharged particles and arewidely used in boun...The computational approach for solving the Faddeev-Merkuriev equations in total orbitalmomentum representation is presented.These equations describe a systemof three quantumcharged particles and arewidely used in bound state and scattering calculations.The approach is based on the spline collocation method and exploits intensively the tensor product formof discretized operators and preconditioner,which leads to a drastic economy in both computer resources and time.展开更多
In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis fu...In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis functions,by which physical quantities are approximatedwith their values and derivatives associatedwith Gaussian points.The convergence rate with order O(h4+t2)and the stability of the scheme are proved.Conservation properties are shown in both theory and practice.Extensive numerical experiments are presented to validate the numerical study under consideration.展开更多
Presents a study that determined a theoretical proof for the spectral analysis result of the first-order Hermite cubic spline collocation differentation matrices. Background on the Hermite cubic spline collocation met...Presents a study that determined a theoretical proof for the spectral analysis result of the first-order Hermite cubic spline collocation differentation matrices. Background on the Hermite cubic spline collocation method; Basis of the argumentation in the study regarding the condensation technique and the Hurwitz theorem; Numerical results.展开更多
Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner m...Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.展开更多
In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly s...In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly singular kernel arising in the theory of linear viscoelas-ticity. The novel OSC method is used for the spatial discretization, and ADI Crank-Nicolson-type method combined with the second order fractional quadrature rule are considered for thetemporal component. The stability of proposed scheme is rigourously established, and nearlyoptimal order error estimate is also derived. Numerical experiments are conducted to supportthe predicted convergence rates and also exhibit expected super-convergence phenomena.展开更多
In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The lin...In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.展开更多
In this paper, we study the Hermite cubic spline collocation method with two parame- ters for solving a initial value problem (IVP) of nonlinear fractional differential equations with two Caputo derivatives. The con...In this paper, we study the Hermite cubic spline collocation method with two parame- ters for solving a initial value problem (IVP) of nonlinear fractional differential equations with two Caputo derivatives. The convergence and nonlinear stability of the method are established. Some illustrative examples are provided to verify our theoretical results. The numerical results also indicate that the convergence order is min{4 - α, 4 - β}, where 0 〈β〈 αa 〈 1 are two parameters associated with the fractional differential equations.展开更多
基金The research of J.C.Lopez-Marcos is supported in part by Ministerio de Ciencia e Innovacion,MTM2011-25238.
文摘We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval.Using an extension of the analysis of Douglas and Dupont[23]for Dirichlet boundary conditions,we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space.We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROWfor solving almost block diagonal linear systems.We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena.
基金This work was supported by grant no.13328 from the Petroleum Institute,Abu Dhabi,UAE.
文摘The alternating direction implicit(ADI)method is a highly efficient technique for solving multi-dimensional time dependent initial-boundary value problems on rectangles.When the ADI technique is coupled with orthogonal spline collocation(OSC)for discretization in space we not only obtain the global solution efficiently but the discretization error with respect to space variables can be of an arbitrarily high order.In[2],we used a Crank Nicolson ADI OSC method for solving general nonlinear parabolic problems with Robin’s boundary conditions on rectangular polygons and demonstrated numerically the accuracy in various norms.A natural question that arises is:Does this method have an extension to non-rectangular regions?In this paper,we present a simple idea of how the ADI OSC technique can be extended to some such regions.Our approach depends on the transfer of Dirichlet boundary conditions in the solution of a two-point boundary value problem(TPBVP).We illustrate our idea for the solution of the heat equation on the unit disc using piecewise Hermite cubics.
文摘The computational approach for solving the Faddeev-Merkuriev equations in total orbitalmomentum representation is presented.These equations describe a systemof three quantumcharged particles and arewidely used in bound state and scattering calculations.The approach is based on the spline collocation method and exploits intensively the tensor product formof discretized operators and preconditioner,which leads to a drastic economy in both computer resources and time.
文摘In this paper,we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations.This method uses the Hermite basis functions,by which physical quantities are approximatedwith their values and derivatives associatedwith Gaussian points.The convergence rate with order O(h4+t2)and the stability of the scheme are proved.Conservation properties are shown in both theory and practice.Extensive numerical experiments are presented to validate the numerical study under consideration.
基金The Project supported by A Grant from the Research Grants Council of the Hong Kong Spelial Administrative Region, China (Project No. CityU 1061/00p) the Foundation of Chinese Academy of Engineering Physics.
文摘Presents a study that determined a theoretical proof for the spectral analysis result of the first-order Hermite cubic spline collocation differentation matrices. Background on the Hermite cubic spline collocation method; Basis of the argumentation in the study regarding the condensation technique and the Hurwitz theorem; Numerical results.
文摘Cubic B-spline taken as trial function, the nonlinear bending of a circular sandwich plate was calculated by the method of point collocation. The support could be elastic. A sandwich plate was assumed to be Reissner model. The formulae were developed for the calculation of a circular sandwich plate subjected to polynomial distributed loads, uniformly distributed moments, radial pressure or radial prestress along the edge and their combination. Buckling load was calculated for the first time by nonlinear theory. Under action of uniformly distributed loads, results were compared with that obtained by the power series method. Excellences of the program written by the spline collocation method are wide convergent range, high precision and universal.
基金supported by National Nature Science Foundation of China(11701168,11601144 and 11626096)Hunan Provincial Natural Science Foundation of China(2018JJ3108,2018JJ3109 and 2018JJ4062)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(16K026 and YB2016B033)China Postdoctoral Science Foundation(2018M631403)
文摘In this paper, a new kind of alternating direction implicit (ADI) Crank-Nicolson-type orthogonal spline collocation (OSC) method is formulated for the two-dimensional frac-tional evolution equation with a weakly singular kernel arising in the theory of linear viscoelas-ticity. The novel OSC method is used for the spatial discretization, and ADI Crank-Nicolson-type method combined with the second order fractional quadrature rule are considered for thetemporal component. The stability of proposed scheme is rigourously established, and nearlyoptimal order error estimate is also derived. Numerical experiments are conducted to supportthe predicted convergence rates and also exhibit expected super-convergence phenomena.
文摘In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.
文摘In this paper, we study the Hermite cubic spline collocation method with two parame- ters for solving a initial value problem (IVP) of nonlinear fractional differential equations with two Caputo derivatives. The convergence and nonlinear stability of the method are established. Some illustrative examples are provided to verify our theoretical results. The numerical results also indicate that the convergence order is min{4 - α, 4 - β}, where 0 〈β〈 αa 〈 1 are two parameters associated with the fractional differential equations.