When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to ...When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.展开更多
The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description ...The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients...For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.展开更多
In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green fun...In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.展开更多
This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes...This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes,where the kernels are PF densities.Moreover,the exact error of approximation of a convolution class with interpolation cardinal splines is determined. The exact values of average n-Kolmogorov widths are obtained for the convolution class.展开更多
In this paper, we establish a sharp function estimate for the multilinear integral operators associated to the pseudo-differential operators. As the application, we obtain the L<sup>p</sup> (1 p norm ...In this paper, we establish a sharp function estimate for the multilinear integral operators associated to the pseudo-differential operators. As the application, we obtain the L<sup>p</sup> (1 p norm inequalities for the multilinear operators.展开更多
We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D)...We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal...This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.展开更多
In this paper, we introduce new subclasses of p-valent analytic functions defined by using differential operator in the open unit disc. We study coefficient inequality, distortion theorem, radius of close to-convexity...In this paper, we introduce new subclasses of p-valent analytic functions defined by using differential operator in the open unit disc. We study coefficient inequality, distortion theorem, radius of close to-convexity, starlikeness and convexity, extreme points and integral operator for functions in these new subclasses.展开更多
Using piecewise constant orthonormal functions, an approximation of the monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) is obtained by approximating the integral equation corresponding to th...Using piecewise constant orthonormal functions, an approximation of the monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) is obtained by approximating the integral equation corresponding to the PDDE as a linear operator over the space of initial conditions. This approximation allows us to consider the state space as finite dimensional resulting in a finite matrix approximation whose spectrum converges to the spectrum of the monodromy operator.展开更多
In this paper, using Opooladifferential operator, we introduce new subclasses of univalent functions andprovide δ -Neigbhourhoods properties, Inclusion relations for the subclasses of univalent functions.
This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integ...This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.展开更多
For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )...For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )P( x) 1/2 . By representing the operators with integrals, explicit solutions are obtained with an integral form of a given function.展开更多
文摘When one function is defined as a differential operation on another function, it’s often desirable to invert the definition, to effectively “undo” the differentiation. A Green’s function approach is often used to accomplish this, but variations on this theme exist, and we examine a few such variations. The mathematical analysis of is sought in the form if such an inverse operator exists, but physics is defined by both mathematical formula and ontological formalism, as I show for an example based on the Dirac equation. Finally, I contrast these “standard” approaches with a novel exact inverse operator for field equations.
文摘The aim of this paper is to approximate the solution of system of fractional delay differential equations. Our technique relies on the use of suitable spline functions of polynomial form. We introduce the description of the proposed approximation method. The error analysis and stability of the method are theoretically investigated. Numerical example is given to illustrate the applicability, accuracy and stability of the proposed method.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘For a real valued function f defined on a finite interval I we consider the problem of approximating f from null spaces of differential operators of the form Ln(ψ) =∑k=0^n akψ(k) where the constant coefficients ak C R may be adapted to f.
文摘In this paper, Leibniz' formula of generalized divided difference with respect to a class of differential operators whose basic sets of solutions have power form, is considered. The recurrence formula of Green function about the operators is also given.
文摘This paper discusses some problems on the cardinal spline interpolation correspond- ing to infinite order differential operators.The remainder formulas and a dual theorem are es- tablished for some convolution classes,where the kernels are PF densities.Moreover,the exact error of approximation of a convolution class with interpolation cardinal splines is determined. The exact values of average n-Kolmogorov widths are obtained for the convolution class.
文摘In this paper, we establish a sharp function estimate for the multilinear integral operators associated to the pseudo-differential operators. As the application, we obtain the L<sup>p</sup> (1 p norm inequalities for the multilinear operators.
文摘We consider the space of rapidly decreasing sequences s and the derivative operator D defined on it. The object of this article is to study the equivalence of a differential operator of infinite order; that is φ(D) =^∞∑k=0φkD^k.φk constant numbers an a power of D.Dn, meaning, is there a isomorphism X (from s onto s) such that Xφ(D) = D^nX?. We prove that if φ(D) is equivalent to Dn, then φ(D) is of finite order, in fact a polynomial of degree n. The question of the equivalence of two differential operators of finite order in the space s is addressed too and solved completely when n = 1.
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金This work is supported by the grant of Istanbul University (Project UDP-227/18022004)
文摘This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.
基金Supported by the Natural Science Foundation of the People’s Republic of China under Grant(11561001) Supported by the Natural Science Foundation of Inner Mongolia of the People’s Republic of China under Grant(2014MS0101)
文摘In this paper, we introduce new subclasses of p-valent analytic functions defined by using differential operator in the open unit disc. We study coefficient inequality, distortion theorem, radius of close to-convexity, starlikeness and convexity, extreme points and integral operator for functions in these new subclasses.
文摘Using piecewise constant orthonormal functions, an approximation of the monodromy operator of a Linear Periodic Delay Differential Equation (PDDE) is obtained by approximating the integral equation corresponding to the PDDE as a linear operator over the space of initial conditions. This approximation allows us to consider the state space as finite dimensional resulting in a finite matrix approximation whose spectrum converges to the spectrum of the monodromy operator.
文摘In this paper, using Opooladifferential operator, we introduce new subclasses of univalent functions andprovide δ -Neigbhourhoods properties, Inclusion relations for the subclasses of univalent functions.
文摘This paper describes an approximating solution, based on Lagrange interpolation and spline functions, to treat functional integral equations of Fredholm type and Volterra type. This method extended to functional integral and integro-differential equations. For showing efficiency of the method we give some numerical examples.
文摘For linear partial differential equation 〔 2t 2-a 2P( x)〕 m u=f(x,t), where m1,X∈R n,t∈R 1, the author gives the analytic solution of the initial value problem using the operators sh(tP( x) 1/2 )P( x) 1/2 . By representing the operators with integrals, explicit solutions are obtained with an integral form of a given function.