This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental inve...This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental investigation. Based on coupled electromagnetic and thermal fields analysis, the 3D model is used to estimate the temperature distribution and the hardness profile. The proposed study examines the hardening process parameters, such as frequency, induced current density and heating time, known to have an influence on hardened surface and builds the simulation model step by step. The established model can provide not only an accurate prediction of temperature distribution and hardness profile but also a comprehensive analysis of machine parameters effects, especially the frequency. The numerical results achieved by this model are good and present a great agreement to the experimental data.展开更多
In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype...In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.展开更多
The deformation principles of the steady- state and the unsteady一state of open- die cold extrusion for involute spline shafts are analyzed by means of experiments. On one hand,based on the deformation princ...The deformation principles of the steady- state and the unsteady一state of open- die cold extrusion for involute spline shafts are analyzed by means of experiments. On one hand,based on the deformation principles of the steady- state, data for determining structural parameters of the die, the size of the billet and the constraint condition of this technique are given. On the other hand, according to the principles of the unsteady- state, data for modifying the shapes and sizes of the bil- lets are provided.展开更多
文摘This paper is devoted to the study of frequency effects on hardness profile of AISI 4340 spline shaft heat-treated by induction through an extensive 3D finite element method simulation and structured experimental investigation. Based on coupled electromagnetic and thermal fields analysis, the 3D model is used to estimate the temperature distribution and the hardness profile. The proposed study examines the hardening process parameters, such as frequency, induced current density and heating time, known to have an influence on hardened surface and builds the simulation model step by step. The established model can provide not only an accurate prediction of temperature distribution and hardness profile but also a comprehensive analysis of machine parameters effects, especially the frequency. The numerical results achieved by this model are good and present a great agreement to the experimental data.
基金Supported by Industrial Technology Development Program of China(Grant Nos.JCKY2017208C005,A0920132008)National Natural Science Foundation of China(Grant No.51575049)
文摘In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.
文摘The deformation principles of the steady- state and the unsteady一state of open- die cold extrusion for involute spline shafts are analyzed by means of experiments. On one hand,based on the deformation principles of the steady- state, data for determining structural parameters of the die, the size of the billet and the constraint condition of this technique are given. On the other hand, according to the principles of the unsteady- state, data for modifying the shapes and sizes of the bil- lets are provided.