As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation m...As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.展开更多
An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. Howe...An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. However, in clinical diagnosis, it is necessary to reconstruct a susceptibility map efficiently with an appropriate method. Here, a modified QSM reconstruction method called weighted total variation using split Bregman (WTVSB) is proposed. It reconstructs the susceptibility map with fast computational speed and effective artifact suppression by incorporating noise-suppressed data weighting with split Bregman iteration. The noise-suppressed data weighting is determined using the Laplacian of the calculated local field, which can prevent the noise and errors in field maps from spreading into the susceptibility inversion. The split Bregman iteration accelerates the solution of the Ll-regularized reconstruction model by utilizing a preconditioned conjugate gradient solver. In an experiment, the proposed reconstruction method is compared with truncated k-space division (TKD), morphology enabled dipole inversion (MEDI), total variation using the split Bregman (TVSB) method for numerical simulation, phantom and in vivo human brain data evaluated by root mean square error and mean structure similarity. Experimental results demonstrate that our proposed method can achieve better balance between accuracy and efficiency of QSM reconstruction than conventional methods, and thus facilitating clinical applications of QSM.展开更多
Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color ima...Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color image diffusion.Five variational models for color image inpainting are proposed and their Split Bregman algorithms are designed.Their regularizers are LTV(Layered Total Variation) regularizer,CTV(Color Total Variation) regularizer,MTV(Multichannel Total Variation) regularizer,PA(Polyakov Action) regularizer and RPA(Reduced Polyakov Action) regularizer respectively.In order to compare their performances,we use the same data term...Some numerical experiments show the differences of the above mentioned models for color image inpainting.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB1902700)the National Natural Science Foundation of China(No.11875129)+3 种基金the Fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(No.SKLIPR1810)the Fund of Innovation Center of Radiation Application(No.KFZC2020020402)the Fund of the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFY08)the Joint Innovation Fund of China National Uranium Co.,Ltd.,State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(No.2022NRE-LH-02).
文摘As a complement to X-ray computed tomography(CT),neutron tomography has been extensively used in nuclear engineer-ing,materials science,cultural heritage,and industrial applications.Reconstruction of the attenuation matrix for neutron tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0°to 180°and typically takes several hours to complete.Such a low time-resolved resolution degrades the quality of neutron imaging.Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images;however,this requires efficient reconstruction algorithms.Therefore,sparse-view reconstruction algorithms in neutron tomography need to be investigated.In this study,we investigated the three-dimensional reconstruction algorithm for sparse-view neu-tron CT scans.To enhance the reconstructed image quality of neutron CT,we propose an algorithm that uses OS-SART to reconstruct images and a split Bregman to solve for the total variation(SBTV).A comparative analysis of the performances of each reconstruction algorithm was performed using simulated and actual experimental data.According to the analyzed results,OS-SART-SBTV is superior to the other algorithms in terms of denoising,suppressing artifacts,and preserving detailed structural information of images.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474236,81671674,and 11775184)the Science and Technology Project of Fujian Province,China(Grant No.2016Y0078)
文摘An ill-posed inverse problem in quantitative susceptibility mapping (QSM) is usually solved using a regularization and optimization solver, which is time consuming considering the three-dimensional volume data. However, in clinical diagnosis, it is necessary to reconstruct a susceptibility map efficiently with an appropriate method. Here, a modified QSM reconstruction method called weighted total variation using split Bregman (WTVSB) is proposed. It reconstructs the susceptibility map with fast computational speed and effective artifact suppression by incorporating noise-suppressed data weighting with split Bregman iteration. The noise-suppressed data weighting is determined using the Laplacian of the calculated local field, which can prevent the noise and errors in field maps from spreading into the susceptibility inversion. The split Bregman iteration accelerates the solution of the Ll-regularized reconstruction model by utilizing a preconditioned conjugate gradient solver. In an experiment, the proposed reconstruction method is compared with truncated k-space division (TKD), morphology enabled dipole inversion (MEDI), total variation using the split Bregman (TVSB) method for numerical simulation, phantom and in vivo human brain data evaluated by root mean square error and mean structure similarity. Experimental results demonstrate that our proposed method can achieve better balance between accuracy and efficiency of QSM reconstruction than conventional methods, and thus facilitating clinical applications of QSM.
文摘Image inpainting is an important part of image science,but in the past,researches were focused on gray value image inpainting.In this paper,we investigate the inpainting effects of some variational models of color image diffusion.Five variational models for color image inpainting are proposed and their Split Bregman algorithms are designed.Their regularizers are LTV(Layered Total Variation) regularizer,CTV(Color Total Variation) regularizer,MTV(Multichannel Total Variation) regularizer,PA(Polyakov Action) regularizer and RPA(Reduced Polyakov Action) regularizer respectively.In order to compare their performances,we use the same data term...Some numerical experiments show the differences of the above mentioned models for color image inpainting.