In order to study the effect of splitter blades on the internal and external sound field of the hydraulic turbine,the paper chose a centrifugal pump with a specific speed ns=33 reversed as a hydraulic turbine as the r...In order to study the effect of splitter blades on the internal and external sound field of the hydraulic turbine,the paper chose a centrifugal pump with a specific speed ns=33 reversed as a hydraulic turbine as the research object,and added the short blades on the original impeller to form a new splitter impeller.Based on the Re-Normalization Group(RNG)k-εturbulence model to conduct numerical simulation for the hydraulic turbine,this thesis calculated the internal and external acoustic field by means of the acoustic boundary element(BEM)and finite element(FEM)and analyzed the noise radiation characteristics of the two models under different working conditions.The results show that the blade frequency is the main factor affecting the inlet and outlet sound pressure,and the optimized model decreases the inlet and outlet sound pressure levels by 6.84 and 7.24 dB in optimal working conditions.Rotor-stator interaction is the main reason for the flow-induced noise of hydraulic turbine volute appearing,the optimized model can effectively reduce the impeller and volute rotor-stator interaction and the flow-induced noise of volute.Outfield maximum sound pressure appears at the inlet and the volute tongue,which decreased by 1.84,6.07,and 5.24 dB at each operating condition.To sum up,splitter blades can improve hydraulic characteristics and flow field noise in the hydraulic turbine.展开更多
Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. ...Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. New results are obtained from the analysis of turbulence kinetic energy and relative velocity distribution: Firstly, unreasonable length or deviation design of the splitter blades may cause great turbulent fluctuation in impeller channel, which has a great effect on the stability of impeller outlet flow; Secondly, it is found that the occurrence of flow separation can be decreased or delayed with splitter blades from the analysis of blade loading; Thirdly, the effect of splitter blades on reforming the structure of "jet-wake" is explained from the relative velocity distribution at different flow cross-sections, which shows the flow process in the impeller. The inner flow analysis verifies the results of performance tests results and the PIV test.展开更多
Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runne...Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.展开更多
For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential dist...For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.展开更多
The splitter blades are widely used in axial compressors and play an active role in the improvement of the overall performance of compressors. However, little research on the application of splitter blades to small ax...The splitter blades are widely used in axial compressors and play an active role in the improvement of the overall performance of compressors. However, little research on the application of splitter blades to small axial flow fans is conducted. This paper designs a splitter blade small axial flow fan (model B) with a small axial flow fan as the prototype fan (model A) by adding short blades at the second half part of the passageway among long blades of model A. The steady simulation for the two models was conducted with the help of RNG k-ε turbulence model provided by software Fluent, and static characteristics and internal flow characteristics of the two models were compared and analyzed. Results show that splitter blades can improve the unsteady flow in the small flow rate region and also have a positive role to increase static pressure rise and efficiency in the higher flow rate region. The variation of static pressure gradient on the meridian plane in model B is well-distributed. The static pressure on the blade surface of model B distributes more uniformly. Splitter blades can suppress the secondary flow from pressure side to suction side in the leading edge because the pressure difference between suction side and pressure side in model B is generally lower than that of model A. And it also can restrain the vortex shedding and flow separation, and further it may be able to get the aerodynamic noise lower because static pressure gradient on the blade surface is well-distributed and the vortex shedding is not developed. Therefore, the performance of the fan with splitter blades is better than that of the prototype fan. The findings of this paper can be a basis for the design of high performance small axial flow fans.展开更多
Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized...Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini cen- trifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this re- search to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini cen- trifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the un- steady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.展开更多
Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. The...Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades.Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.展开更多
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the...To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.展开更多
To analyze the internal flow characteristics of each subchannel in a low-specific-speed centrifugal pump with splitter blades,the time histories and frequency spectra of pressure fluctuations and the distributions of ...To analyze the internal flow characteristics of each subchannel in a low-specific-speed centrifugal pump with splitter blades,the time histories and frequency spectra of pressure fluctuations and the distributions of the corresponding flow states in one impeller channel were investigated through the numerical analysis.Performance experiments and particle image velocimetry (PIV) tests were carried out to verify the results of the numerical calculations.The results suggested that the simulation analysis agreed well with the test results.The time histories and frequency spectra of pressure fluctuations depending on its location (close to or away from the volute tongue) present different changes.The predominant frequency of each monitor point equals to five or ten times shaft frequency.The jet-wake flow pattern at each subchannel separated by splitter blade in one impeller channel is not circumferentially uniform.For the channel away from volute tongue,the magnitude of turbulence kinetic energy in pressure side subchannel is well larger than that in suction side subchannel.With the increase in flow rate,the region close to the elbow of the volute outlet emerges a large-scale vortex.展开更多
基金the support of the Science and Technology Plan Project of Gansu Province,China(Grant Nos.20JR5RA447,20JR10RA174,20JR10RA203)Colleges and Universities Industrial Support Program Projects of Gansu Province(Grant No.2020C-20)Key Laboratory of Fluid and Power Machinery,Ministry of Education,Xihua University(Grant No.szjj2019-016,LTDL2020-007).
文摘In order to study the effect of splitter blades on the internal and external sound field of the hydraulic turbine,the paper chose a centrifugal pump with a specific speed ns=33 reversed as a hydraulic turbine as the research object,and added the short blades on the original impeller to form a new splitter impeller.Based on the Re-Normalization Group(RNG)k-εturbulence model to conduct numerical simulation for the hydraulic turbine,this thesis calculated the internal and external acoustic field by means of the acoustic boundary element(BEM)and finite element(FEM)and analyzed the noise radiation characteristics of the two models under different working conditions.The results show that the blade frequency is the main factor affecting the inlet and outlet sound pressure,and the optimized model decreases the inlet and outlet sound pressure levels by 6.84 and 7.24 dB in optimal working conditions.Rotor-stator interaction is the main reason for the flow-induced noise of hydraulic turbine volute appearing,the optimized model can effectively reduce the impeller and volute rotor-stator interaction and the flow-induced noise of volute.Outfield maximum sound pressure appears at the inlet and the volute tongue,which decreased by 1.84,6.07,and 5.24 dB at each operating condition.To sum up,splitter blades can improve hydraulic characteristics and flow field noise in the hydraulic turbine.
基金This project is supported by Foundation of National College Doctoral Prog-ram of China(No.20050299006).
文摘Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carfled out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. New results are obtained from the analysis of turbulence kinetic energy and relative velocity distribution: Firstly, unreasonable length or deviation design of the splitter blades may cause great turbulent fluctuation in impeller channel, which has a great effect on the stability of impeller outlet flow; Secondly, it is found that the occurrence of flow separation can be decreased or delayed with splitter blades from the analysis of blade loading; Thirdly, the effect of splitter blades on reforming the structure of "jet-wake" is explained from the relative velocity distribution at different flow cross-sections, which shows the flow process in the impeller. The inner flow analysis verifies the results of performance tests results and the PIV test.
基金Comprehensive Health Management Promotion Center of Xihua University(kgl2018-019)Scientific Research Project of the Education Department of Sichuan,China(18ZB0560)National Natural Science Foundation of China(51279172)
文摘Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.
文摘For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.
文摘The splitter blades are widely used in axial compressors and play an active role in the improvement of the overall performance of compressors. However, little research on the application of splitter blades to small axial flow fans is conducted. This paper designs a splitter blade small axial flow fan (model B) with a small axial flow fan as the prototype fan (model A) by adding short blades at the second half part of the passageway among long blades of model A. The steady simulation for the two models was conducted with the help of RNG k-ε turbulence model provided by software Fluent, and static characteristics and internal flow characteristics of the two models were compared and analyzed. Results show that splitter blades can improve the unsteady flow in the small flow rate region and also have a positive role to increase static pressure rise and efficiency in the higher flow rate region. The variation of static pressure gradient on the meridian plane in model B is well-distributed. The static pressure on the blade surface of model B distributes more uniformly. Splitter blades can suppress the secondary flow from pressure side to suction side in the leading edge because the pressure difference between suction side and pressure side in model B is generally lower than that of model A. And it also can restrain the vortex shedding and flow separation, and further it may be able to get the aerodynamic noise lower because static pressure gradient on the blade surface is well-distributed and the vortex shedding is not developed. Therefore, the performance of the fan with splitter blades is better than that of the prototype fan. The findings of this paper can be a basis for the design of high performance small axial flow fans.
文摘Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini cen- trifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this re- search to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini cen- trifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the un- steady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.
文摘Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades.Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.
基金supported by grants from the National Natural Science Foundation of China (No.51076144)the Major Special Project of Technology Office in Zhejiang Province (No.2011C11073, No.2011C16038)
文摘To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.
基金This research was funded by the National Key R&D Program Projects of China(Grant No.2018YFB0606101)National Natural Science Foundation of China(Grant No.51409123)+2 种基金The State Key Program of National Natural Science of China(Grant No.51239005)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Innovation projectfor Postgraduates of Jiangsu Province(Grant No.KYLX15_1064).
文摘To analyze the internal flow characteristics of each subchannel in a low-specific-speed centrifugal pump with splitter blades,the time histories and frequency spectra of pressure fluctuations and the distributions of the corresponding flow states in one impeller channel were investigated through the numerical analysis.Performance experiments and particle image velocimetry (PIV) tests were carried out to verify the results of the numerical calculations.The results suggested that the simulation analysis agreed well with the test results.The time histories and frequency spectra of pressure fluctuations depending on its location (close to or away from the volute tongue) present different changes.The predominant frequency of each monitor point equals to five or ten times shaft frequency.The jet-wake flow pattern at each subchannel separated by splitter blade in one impeller channel is not circumferentially uniform.For the channel away from volute tongue,the magnitude of turbulence kinetic energy in pressure side subchannel is well larger than that in suction side subchannel.With the increase in flow rate,the region close to the elbow of the volute outlet emerges a large-scale vortex.