Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudaf...Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi(Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis)is to find x ∈ F(U), y ∈ F(T) such that Ax = By,(1)where U : H;→ H;and T : H;→ H;are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H;: Ux = x} and F(T) = {x ∈ H;: Tx = x}. Note that,by taking B = I and H;= H;in(1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP(1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP(1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms.展开更多
In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged ...In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.展开更多
Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of d...Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.展开更多
Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the fin...Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.展开更多
Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point ...Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.展开更多
In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the st...In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the strong convergence theorem under appropriate conditions.As an application,the results are applied to solving the zero problem and the equilibrium problem.展开更多
In this paper we show the occurrence of cubic-root asymptotics in misspecified conditional quantile models where the approximating functions are restricted to be binary decision trees. Inference procedure for the opti...In this paper we show the occurrence of cubic-root asymptotics in misspecified conditional quantile models where the approximating functions are restricted to be binary decision trees. Inference procedure for the optimal split point in the decision tree is conducted by inverting a t-test or a deviation measure test, both involving Chemoff type limiting distributions. In order to avoid estimating the nuisance parameters in the complicated limiting distribution, subsampling is proved to deliver the correct confidence interval/set.展开更多
基金supported by National Natural Science Foundation of China(61503385)Fundamental Research Funds for the Central Universities of China(3122016L002)
文摘Let H;, H;, H;be real Hilbert spaces, let A : H;→ H;, B : H;→ H;be two bounded linear operators. The split equality common fixed point problem(SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi(Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis)is to find x ∈ F(U), y ∈ F(T) such that Ax = By,(1)where U : H;→ H;and T : H;→ H;are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H;: Ux = x} and F(T) = {x ∈ H;: Tx = x}. Note that,by taking B = I and H;= H;in(1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP(1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP(1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms.
文摘In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area.
基金supported by the National Key Research and Development Program of China (No. 2017YFA0402500)the National MCF Energy R&D Program of China (No. 2019YFE03040000)+5 种基金National Natural Science Foundation of China (Nos. 12005262 and 11975274)the Foundation of President of Hefei Institutes of Physical Science, CAS (No. YZJJ2018QN8)the Anhui Provincial Natural Science Foundation (No. 2108085J06)the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE018 and 2020HSC-UE011)External Cooperation Program of Chinese Academy of Sciences (No. 116134KYSB20180035)Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-04)
文摘Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11301521, 11771467, 11071041), the Natural Science Foundation of Fujian Province (Nos. 2016J01005, 2015J01578), and the National Post- doctoral Program for Innovative Talents (No. BX201700234).
文摘Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.
基金the Alexander von Humboldt Foundation,Bonn for the fellowship
文摘Our contribution in this paper is to propose an iterative algorithm which does not reqmre prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these Mgorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the Mgorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12171435)the Natural Science Foundation of Zhejiang Province(Grant No.LY14A010011).
文摘In this paper,we study a modified implicit rule for finding a solution of split common fixed point problem of a Bregman quasi-nonexpansive mapping in Banach spaces.We propose a new iterative algorithm and prove the strong convergence theorem under appropriate conditions.As an application,the results are applied to solving the zero problem and the equilibrium problem.
文摘In this paper we show the occurrence of cubic-root asymptotics in misspecified conditional quantile models where the approximating functions are restricted to be binary decision trees. Inference procedure for the optimal split point in the decision tree is conducted by inverting a t-test or a deviation measure test, both involving Chemoff type limiting distributions. In order to avoid estimating the nuisance parameters in the complicated limiting distribution, subsampling is proved to deliver the correct confidence interval/set.