The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the ene...The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the energy matrix) method. On the basis of this, the local lattice distortions, the ZFS parameters D, a, F and the optical spectrum for Cr2+ ions doped into ZnSe are theoretically investigated, and the contributions of the spin singlets have been taken into account. The calculated ZFS parameters are in good agreement with the experimental values. From our calculations, the tetragonal distortion parameters AR = 0.091A and Aθ = 4.28° of Cr2+ in ZnSe are acquired, and the results suggest that there exists a tetragonal expansion distortion for the local lattice structure of (CrSe4)6- clusters in ZnSe crystals. The influence of the spin singlets on ZFS parameters is also discussed, indicating that the contributions to ZFS parameters a and F cannot be ignored.展开更多
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop...By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11274235 and 11104190)the Doctoral Education Fund of Education Ministry of China(Grant No.20110181120112)
文摘The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the energy matrix) method. On the basis of this, the local lattice distortions, the ZFS parameters D, a, F and the optical spectrum for Cr2+ ions doped into ZnSe are theoretically investigated, and the contributions of the spin singlets have been taken into account. The calculated ZFS parameters are in good agreement with the experimental values. From our calculations, the tetragonal distortion parameters AR = 0.091A and Aθ = 4.28° of Cr2+ in ZnSe are acquired, and the results suggest that there exists a tetragonal expansion distortion for the local lattice structure of (CrSe4)6- clusters in ZnSe crystals. The influence of the spin singlets on ZFS parameters is also discussed, indicating that the contributions to ZFS parameters a and F cannot be ignored.
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
基金Supported by the National Key Technologies Research&Development Program(2017YFC0804607)the National Key Basic Research Development Plan(973 Proect)(2014CB047000)
文摘By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.