The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different paramet...The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.展开更多
Impact of amplified spontaneous emission(ASE)noise on the stimulated Raman scattering(SRS)threshold of highpower fiber amplifiers is demonstrated numerically through a spectral evolution approach.The simulation result...Impact of amplified spontaneous emission(ASE)noise on the stimulated Raman scattering(SRS)threshold of highpower fiber amplifiers is demonstrated numerically through a spectral evolution approach.The simulation results confirm that ASE noise in the Raman wavelength band could reduce the SRS threshold of high-power fiber amplifiers significantly.As for ASE noise originated the main amplifier,it becomes stronger and reduces the SRS threshold at shorter operation wavelength below 1052 nm.As for ASE noise originated from the seed laser,it reduces the SRS threshold at different operation wavelength under the condition that the Raman ratio is over-90 dB in the seed laser.The theoretical method and results in this work could provide a well reference to extend the operation wavelength of high-power fiber lasers.展开更多
We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion o...We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initially being at rest are obtained, it is found that in the first order of the mass M, the frequency of the emitted photon is smaller than the transition frequency of the TLS and the SE rate is smaller than the SE rate Γfof the TLS fixed in the same waveguide. The SE rate for the TLS initially being moving is obtained in the second order of the mass M. The SE rate is smaller than Γfbut it is dependent not only on the atomic mass but also on the initial momentum. The carried frequency of the emitted photon is decreased when it travels along the direction of the initial momentum, whereas it is increased when it travels in the opposite direction of the initial momentum.展开更多
The spontaneous emission rate of a two-level quantum emitter(QE)near a gold nanorod is numerically investigated.Three different optical response models for the free-electron gas are adopted,including the classical Dru...The spontaneous emission rate of a two-level quantum emitter(QE)near a gold nanorod is numerically investigated.Three different optical response models for the free-electron gas are adopted,including the classical Drude local response approximation,the nonlocal hydrodynamic model,and the generalized nonlocal optical response model.Nonlocal optical response leads to a blueshift and a reduction in the enhancement of the spontaneous emission rate.Within all the three models,the resonance frequency is largely determined by the aspect ratio(the ratio of the nanorod length to the radius)and increases sharply with decreasing aspect ratio.For nanorod with a fixed length,it is found that the larger the radius is,the higher the resonance frequency is,and the smaller the enhancement is.However,if the length of the nanorod increases,the peak frequency falls sharply,while the spontaneous emission enhancement grows rapidly.For nanorod with a fixed aspect ratio,the peak frequency decreases slowly with increasing nanorod size.Larger nanorod shows smaller nonlocal effect.At a certain frequency,there is an optimal size to maximize the enhancement of the spontaneous emission rate.Higher order modes are more affected by the nonlocal smearing of the induced charges,leading to larger blueshift and greater reduction in the enhancement.These results should be significant for investigating the spontaneous emission rate of a QE around a gold nanorod.展开更多
To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperature...To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.展开更多
The equation was presented for the spontaneous emission rate Anano of the two-level optical centers in the subwavelength eilipsoi- dal nanocrystals embedded in a dielectric medium. An important result was that the rat...The equation was presented for the spontaneous emission rate Anano of the two-level optical centers in the subwavelength eilipsoi- dal nanocrystals embedded in a dielectric medium. An important result was that the ratio Anano/Abulk could be estimated without recourse to a particular local-field model. On the ground of this equation the expression was derived for linestrength of electric-dipole transition in trivalent rare-earth ions. The applicability of the Judd-Ofelt equation for nanoparticles was discussed.展开更多
This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconduct...This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconductor coreshell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated. The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements. The modification of the spontaneous emission rate, which is reflected in the change of spectral shape and PL lifetime, is clearly observed. While an obvious increase in the PL lifetime is found at most wavelengths in the band gap, a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge. Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal. It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously. This finding provides a simple and effective way for improving the performance of light emitting devices.展开更多
Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized...Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized atom between the mirrors is related to the atomic position and the polarization direction. The results show that in the vicinity of the mirror, the variation of the spontaneous emission rate depends crucially on the atomic polarization direction. With the increase of the polarization angle, the oscillation in the spontaneous emission rate becomes decreased. For the polarization direction parallel to the mirror plane, the oscillation is the greatest; while for the perpendicular polarization direction, the oscillation is nearly vanished. The agreement between our result and the quantum electrodynamics result suggests the correctness of our calculation. This study further verifies that the atomic spontaneous emission process can be effectively controlled by changing the polarization orientation of the atom.展开更多
This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μm optical amplifiers. A very broad erbium amplified spontaneous emission in the...This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μm optical amplifiers. A very broad erbium amplified spontaneous emission in the range 1450-1650 nm from erbium-doped single-mode tellurite glass-fibre is obtained upon excitation of a 980-nm laser diode. The effects of the length of glass-fibre and the pumping power of laser diode on the amplified spontaneous emission are discussed. The result indicates that the tellurite glass-fibre is a promising candidate for designing fibre-optic amplifiers and lasers.展开更多
The dynamic and the radiative properties of an excited three-level atom embedded in an anisotropic photonic crystal with two coherent bands are investigated.The relative position of the atom in a Wigner-Seitz cell is ...The dynamic and the radiative properties of an excited three-level atom embedded in an anisotropic photonic crystal with two coherent bands are investigated.The relative position of the atom in a Wigner-Seitz cell is described with a position-dependent parameter 胃(r0),which is used as the coherent parameter for the two bands.The result shows that the dynamic properties of the atomic system are not only determined by atomic transition frequencies,but also affected by the gap width and the coherence of the two bands.In addition,the spontaneous emission spectrum of the atomic transition in free space is discussed.The center and the intensity of the spectrum can be obviously manipulated via the coherent parameter.展开更多
We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on t...We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on the initial state of the system and the species of atoms. The three-body entanglement is the result of the coherent superposition of the two-body entanglements. The larger the two-body entanglement is, the stronger the three-body entanglement is. On the other hand, if there exists a great difference in three two-body entanglement measures, the three-body entanglement is very weak. We also find that the maximum of the two-body entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms via adjusting the difference in atomic frequency.展开更多
By taking into account spatial degrees of freedom of atoms, we study the internal-state disentanglement dynamics of two atoms interacting with a vacuum multi-mode noise field. We show that the complete internal-state ...By taking into account spatial degrees of freedom of atoms, we study the internal-state disentanglement dynamics of two atoms interacting with a vacuum multi-mode noise field. We show that the complete internal-state disentanglement of the two atoms, caused due to the atomic spontaneous emission can be achieved in a finite time.展开更多
We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic osci...We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.展开更多
The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state(DOS) in the anisotropic photonic band gap(PBG) and the cohe...The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state(DOS) in the anisotropic photonic band gap(PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom,the spontaneous emission depends on the dynamically induced Autler–Townes splitting and its position relative to the PBG.Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission.展开更多
Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental mea...Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental measurements of a BuEH-PPV sample pumped at different pump intensities from Ip = 0.61 MW/cm2 to 5.2 MW/cm2. Both homogeneously and inhomogeneously broadened transition lines along with a model based on the geometrically dependent gain coefficient (GDGC) are examined and it is confirmed that for the reported measurements the homogeneously broadened line is responsible for the light-matter interaction. The calculation explains the frequency spectrum of the ASE output intensity extracted from the sample at different pump intensities, unsaturated and saturated gain coefficients, and ASE bandwidth reduction along the propagation direction. Both analytical and numerical calculations for verifying the GDGC model are presented in this paper. Although the introduced model has shown its potential for explaining the ASE behavior in a specific sample it can be universally used for the ASE study in different active media.展开更多
We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap res...We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.展开更多
A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ...A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ASE sources model are obtained by the fitting of color centers generation and recovery process of gain loss data at lower dose rate.Gain loss data at higher dose is applied for self-validating.This model takes both the influence of erbium ions absorption and photon bleaching effect into consideration,which makes the prediction of different dose and dose rate more accurate and flexible.The fitness value between ASE model and gain loss data is 99.98%,which also satisfies the extrapolation at the low dose rate.The method and model may serve as a valuable tool to predict ASE performance in harsh environment.展开更多
Through the picture of dressed states, this paper investigates the spontaneous emission spectrum from a microwavedriven three-level atom embedded in double-band photonic crystals. The physical dynamics of the phase de...Through the picture of dressed states, this paper investigates the spontaneous emission spectrum from a microwavedriven three-level atom embedded in double-band photonic crystals. The physical dynamics of the phase dependent phenomenon are analysed by comparing two models 'upper level coupling' and 'lower level coupling'. When the phase is changed from 0 to π, the variety of spontaneous emission spectra from either of the two models are inverse to each other, in which the relative height and width of the peaks are determined by the density of states in photonic crystals.展开更多
Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertic...Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom(with two upper states close in energy level)strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these "polarized" three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in"polarized" atoms would allow one to deeply explore new frontiers of light–matter interaction.展开更多
The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum ...The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light-QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling pa- rameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20220101031JC)。
文摘The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.
基金the National Natural Science Foundation of China(Grant Nos.62005313 and 62061136013).
文摘Impact of amplified spontaneous emission(ASE)noise on the stimulated Raman scattering(SRS)threshold of highpower fiber amplifiers is demonstrated numerically through a spectral evolution approach.The simulation results confirm that ASE noise in the Raman wavelength band could reduce the SRS threshold of high-power fiber amplifiers significantly.As for ASE noise originated the main amplifier,it becomes stronger and reduces the SRS threshold at shorter operation wavelength below 1052 nm.As for ASE noise originated from the seed laser,it reduces the SRS threshold at different operation wavelength under the condition that the Raman ratio is over-90 dB in the seed laser.The theoretical method and results in this work could provide a well reference to extend the operation wavelength of high-power fiber lasers.
基金supported by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China (Grant No. 2020RC4047)the National Natural Science Foundation of China (Grant Nos. 11975095, 12075082, and 11935006)。
文摘We study the spontaneous emission(SE) of an excited nonrelativistic two-level system(TLS) interacting with the vacuum in a waveguide of rectangular cross section. All TLS’s transitions and the center-of-mass motion of the TLS are taken into account. The SE rate and the carried frequency of the emitted photon for the TLS initially being at rest are obtained, it is found that in the first order of the mass M, the frequency of the emitted photon is smaller than the transition frequency of the TLS and the SE rate is smaller than the SE rate Γfof the TLS fixed in the same waveguide. The SE rate for the TLS initially being moving is obtained in the second order of the mass M. The SE rate is smaller than Γfbut it is dependent not only on the atomic mass but also on the initial momentum. The carried frequency of the emitted photon is decreased when it travels along the direction of the initial momentum, whereas it is increased when it travels in the opposite direction of the initial momentum.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11964010,11564013 and 11464014)the Natural Science Foundation of Hunan Province(Grant No.2020JJ4495)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.18C0558)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant Nos.CX2018B706 and CX20190876)。
文摘The spontaneous emission rate of a two-level quantum emitter(QE)near a gold nanorod is numerically investigated.Three different optical response models for the free-electron gas are adopted,including the classical Drude local response approximation,the nonlocal hydrodynamic model,and the generalized nonlocal optical response model.Nonlocal optical response leads to a blueshift and a reduction in the enhancement of the spontaneous emission rate.Within all the three models,the resonance frequency is largely determined by the aspect ratio(the ratio of the nanorod length to the radius)and increases sharply with decreasing aspect ratio.For nanorod with a fixed length,it is found that the larger the radius is,the higher the resonance frequency is,and the smaller the enhancement is.However,if the length of the nanorod increases,the peak frequency falls sharply,while the spontaneous emission enhancement grows rapidly.For nanorod with a fixed aspect ratio,the peak frequency decreases slowly with increasing nanorod size.Larger nanorod shows smaller nonlocal effect.At a certain frequency,there is an optimal size to maximize the enhancement of the spontaneous emission rate.Higher order modes are more affected by the nonlocal smearing of the induced charges,leading to larger blueshift and greater reduction in the enhancement.These results should be significant for investigating the spontaneous emission rate of a QE around a gold nanorod.
基金Supported by the National Natural Science Foundation of China under Grant No 11504320
文摘To obtain a stable amplified spontaneous emission(ASE) source for complex environment applications, we design an ASE source and study the output power and spectral characteristics under different ambient temperatures.We optimize the structure of the ASE source to flatten the ASE spectrum, and study the output characteristics in terms of output power and optical spectrum under different pump powers. Then the performance of the ASE source is investigated in the temperature range from-18.9°C to 50°C. A stable-power and flat-spectrum ASE source can be obtained by structural optimization and pump control.
基金supported in part by the Russian Foundation for Basic Research (08-02-01058-a)the US Civilian Research and Development Foundation for the New Independent States of the Former Soviet Union (CRDF) (RUP2-1517-MO-06)
文摘The equation was presented for the spontaneous emission rate Anano of the two-level optical centers in the subwavelength eilipsoi- dal nanocrystals embedded in a dielectric medium. An important result was that the ratio Anano/Abulk could be estimated without recourse to a particular local-field model. On the ground of this equation the expression was derived for linestrength of electric-dipole transition in trivalent rare-earth ions. The applicability of the Judd-Ofelt equation for nanoparticles was discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050)the Program for Innovative Research Team of the Higher Education in Guangdong,China (Grant No. 06CXTD005)
文摘This paper demonstrates experimentally and numerically that a significant modification of spontaneous emission rate can be achieved near the surface of a three-dimensional photonic crystal. In experiments, semiconductor coreshell quantum dots are intentionally confined in a thin polymer film on which a three-dimensional colloidal photonic crystal is fabricated. The spontaneous emission rate of quantum dots is characterised by conventional and time-resolved photoluminescence (PL) measurements. The modification of the spontaneous emission rate, which is reflected in the change of spectral shape and PL lifetime, is clearly observed. While an obvious increase in the PL lifetime is found at most wavelengths in the band gap, a significant reduction in the PL lifetime by one order of magnitude is observed at the short-wavelength band edge. Numerical simulation reveals a periodic modulation of spontaneous emission rate with decreasing modulation strength when an emitter is moved away from the surface of the photonic crystal. It is supported by the fact that the modification of spontaneous emission rate is not pronounced for quantum dots distributed in a thick polymer film where both enhancement and suppression are present simultaneously. This finding provides a simple and effective way for improving the performance of light emitting devices.
基金Supported by National Natural Science Foundation of China under Grant No. 10604045the University Science & Technology Planning Program of Shandong Province under Grant No. J09LA02the Discipline Construction Fund of Ludong University
文摘Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized atom between the mirrors is related to the atomic position and the polarization direction. The results show that in the vicinity of the mirror, the variation of the spontaneous emission rate depends crucially on the atomic polarization direction. With the increase of the polarization angle, the oscillation in the spontaneous emission rate becomes decreased. For the polarization direction parallel to the mirror plane, the oscillation is the greatest; while for the perpendicular polarization direction, the oscillation is nearly vanished. The agreement between our result and the quantum electrodynamics result suggests the correctness of our calculation. This study further verifies that the atomic spontaneous emission process can be effectively controlled by changing the polarization orientation of the atom.
基金Project supported by the National Natural Science Foundation 0f China (Grant Nos 50472053 and 60307004), National Century Elitist Table (Grant Nos 04-0821 and 04-0823) and Natural Science Foundation of Guangdong Province. (Grant Nos 04020036 and 2004A10602002).Acknowledgments We are grateful to Mrs Zhang W N, Feng Z M, Chen H and Chen B Y for their technical assistance.
文摘This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μm optical amplifiers. A very broad erbium amplified spontaneous emission in the range 1450-1650 nm from erbium-doped single-mode tellurite glass-fibre is obtained upon excitation of a 980-nm laser diode. The effects of the length of glass-fibre and the pumping power of laser diode on the amplified spontaneous emission are discussed. The result indicates that the tellurite glass-fibre is a promising candidate for designing fibre-optic amplifiers and lasers.
基金Project supported by the Natural Science College Key Projects of Anhui Province,China (Grant No. KJ2010A335)the National Natural Science Foundation of China (Grant No. 41075027)
文摘The dynamic and the radiative properties of an excited three-level atom embedded in an anisotropic photonic crystal with two coherent bands are investigated.The relative position of the atom in a Wigner-Seitz cell is described with a position-dependent parameter 胃(r0),which is used as the coherent parameter for the two bands.The result shows that the dynamic properties of the atomic system are not only determined by atomic transition frequencies,but also affected by the gap width and the coherence of the two bands.In addition,the spontaneous emission spectrum of the atomic transition in free space is discussed.The center and the intensity of the spectrum can be obviously manipulated via the coherent parameter.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025) and the Young Scientific Research Poundation of Hunan Provincial Education Department (Grand No 04B070).
文摘We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on the initial state of the system and the species of atoms. The three-body entanglement is the result of the coherent superposition of the two-body entanglements. The larger the two-body entanglement is, the stronger the three-body entanglement is. On the other hand, if there exists a great difference in three two-body entanglement measures, the three-body entanglement is very weak. We also find that the maximum of the two-body entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms via adjusting the difference in atomic frequency.
基金Supported by Foundation of the Education Department of Liaoning Province under Grant No.20060160the Natural Science Foundation of Zhejiang Province under Grant No.Y6100098+1 种基金the National Natural Scinece Foundation of China under Grant No.11074062the funding support from Hangzhou Normal University
文摘By taking into account spatial degrees of freedom of atoms, we study the internal-state disentanglement dynamics of two atoms interacting with a vacuum multi-mode noise field. We show that the complete internal-state disentanglement of the two atoms, caused due to the atomic spontaneous emission can be achieved in a finite time.
基金The project supported by the Chinese National Key Basic Research Special Fund, the Natural Science Foundation of Beijing, and National Natural Science Foundation of China under Grant No. 90403028
文摘We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.
基金supported by the National Natural Science Foundation of China(Grant Nos.11447232,11204367,11447157,and 11305020)
文摘The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state(DOS) in the anisotropic photonic band gap(PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom,the spontaneous emission depends on the dynamically induced Autler–Townes splitting and its position relative to the PBG.Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission.
文摘Amplified spontaneous emission (ASE), including intensity and bandwidth, in a typical example of BuEH-PPV is calculated. For this purpose, the intensity rate equation is used to explain the reported experimental measurements of a BuEH-PPV sample pumped at different pump intensities from Ip = 0.61 MW/cm2 to 5.2 MW/cm2. Both homogeneously and inhomogeneously broadened transition lines along with a model based on the geometrically dependent gain coefficient (GDGC) are examined and it is confirmed that for the reported measurements the homogeneously broadened line is responsible for the light-matter interaction. The calculation explains the frequency spectrum of the ASE output intensity extracted from the sample at different pump intensities, unsaturated and saturated gain coefficients, and ASE bandwidth reduction along the propagation direction. Both analytical and numerical calculations for verifying the GDGC model are presented in this paper. Although the introduced model has shown its potential for explaining the ASE behavior in a specific sample it can be universally used for the ASE study in different active media.
文摘We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.
基金supported by the Aeronautical Science Foundation of China(Grant No.20170851007)。
文摘A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ASE sources model are obtained by the fitting of color centers generation and recovery process of gain loss data at lower dose rate.Gain loss data at higher dose is applied for self-validating.This model takes both the influence of erbium ions absorption and photon bleaching effect into consideration,which makes the prediction of different dose and dose rate more accurate and flexible.The fitness value between ASE model and gain loss data is 99.98%,which also satisfies the extrapolation at the low dose rate.The method and model may serve as a valuable tool to predict ASE performance in harsh environment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774060 and 10974071)
文摘Through the picture of dressed states, this paper investigates the spontaneous emission spectrum from a microwavedriven three-level atom embedded in double-band photonic crystals. The physical dynamics of the phase dependent phenomenon are analysed by comparing two models 'upper level coupling' and 'lower level coupling'. When the phase is changed from 0 to π, the variety of spontaneous emission spectra from either of the two models are inverse to each other, in which the relative height and width of the peaks are determined by the density of states in photonic crystals.
基金supported by the National Basic Research Foundation of China(Grant No.2011CB922002)
文摘Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom(with two upper states close in energy level)strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these "polarized" three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in"polarized" atoms would allow one to deeply explore new frontiers of light–matter interaction.
基金supported by the National Basic Research Foundation of China (Grant No. 2011CB922002)
文摘The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light-QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling pa- rameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon.