The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr...The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.展开更多
Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. B...Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. Based on the strong coupling, spoof magnetic plasmon modes propagating in the backward direction are proposed along a chain of subwavelength resonators. The theoretical analysis, numerical simulations, and experiments are in good agreement. The proposed novel route for achieving negative-index waveguiding has potential applications in integrated devices and circuits.展开更多
We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband ...We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband terahertz(THz) radiation sources based on GaAs m-i-n diodes have been investigated by applying high electric fields. Then, the free space THz-TDS and fiber-coupled THz-TDS systems produced in our lab and their applications in drug/cancer detection are introduced in detail. To further improve the signal-to-noise ratio(SNR) and enhance sensitivity, we introduce three general micro-cavity approaches to achieve tiny-volume sample detection, summarizing our previous results about their characteristics, performance, and potential applications.展开更多
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000,No.2018YFF01013001,and No.2020YFA0714001the Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108。
文摘The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature.
基金National Natural Science Foundation of China(NSFC)(61701151,61722107,61801152)Natural Science Foundation of Zhejiang Province(LQ18F010004)
文摘Magnetic localized surface plasmon modes are supported on metallic spiral structures. Coupling mechanisms for these metamaterial resonators, which are the joint action of magnetic and electric coupling, are studied. Based on the strong coupling, spoof magnetic plasmon modes propagating in the backward direction are proposed along a chain of subwavelength resonators. The theoretical analysis, numerical simulations, and experiments are in good agreement. The proposed novel route for achieving negative-index waveguiding has potential applications in integrated devices and circuits.
基金The National Natural Science Foundation of China(Nos.62171406,11961141010,61975176)the Key Research and Development Program of the Ministry of Science and Technology(Nos.2022YFA1404902,2022YFA1404704,2022YFA1405200)+2 种基金the Zhejiang Provincial Natural Science Foundation(No.Z20F010018)the Key Research and Development Program of Zhejiang Province(No.2022C01036)the Fundamental Research Funds for the Central Universities。
基金the National Key R&D Program of China (No. 2018YFF01013003)the Program of Shanghai Pujiang Program, China (No. 17PJD028)+4 种基金the National Natural Science Foundation of China (Nos. 61671302, 61601291, and 61722111)the Shuguang Program supported by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China (No. 18SG44)the Key Scientific and Technological Project of Science and Technology Commission of Shanghai Municipality, China (No. 15DZ0500102)the Shanghai Leading Talent, China (No. 2016-019)the Young Yangtse Rive Scholar, China (No. Q2016212).
文摘We give a brief review of the developments in terahertz time-domain spectroscopy(THz-TDS) systems and microcavity components for probing samples in the University of Shanghai for Science and Technology. The broadband terahertz(THz) radiation sources based on GaAs m-i-n diodes have been investigated by applying high electric fields. Then, the free space THz-TDS and fiber-coupled THz-TDS systems produced in our lab and their applications in drug/cancer detection are introduced in detail. To further improve the signal-to-noise ratio(SNR) and enhance sensitivity, we introduce three general micro-cavity approaches to achieve tiny-volume sample detection, summarizing our previous results about their characteristics, performance, and potential applications.