At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they...At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they cannot capture the whole picture of the horizontal structure of Es layers.This study employs the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension model(WACCM-X 2.1)to derive the horizontal structure of the ion convergence region(HSICR)to explore the shapes of the large-scale Es layers over East Asia for the period from June 1 to August 31,2008.The simulation produced the various shapes of the HSICRs elongated in the northwest-southeast,northeast-southwest,or composed of individual small patches.The close connection between Es layer critical frequency(foEs)and vertical ion convergence indicates that the HSICR is a good candidate for revealing and explaining the horizontal structure of the large-scale Es layers.展开更多
A double-laser-beam lidar was successfully developed in 2010 to measure the K layer over Yanqing County, Beijing(40.5°N, 116.2°E). Comprehensive statistical analyses of sporadic K(Ks) layer parameters were c...A double-laser-beam lidar was successfully developed in 2010 to measure the K layer over Yanqing County, Beijing(40.5°N, 116.2°E). Comprehensive statistical analyses of sporadic K(Ks) layer parameters were conducted using two years of lidar data, and the parameters of the Ks layers and their distribution obtained by the analyses are described. The seasonal distribution of Ks occurrence was obtained, with two maxima observed in January and July, respectively. The seasonal distributions of sporadic E(Es) occurrence over Beijing differ from those of Ks occurrence. However, good correlations between Es and Ks in case by case study were found. We also found that four Ks events with peak altitudes lower than 90 km were associated with large and sharp temperature increases in five comparative examples.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA17010207)scholarship received from the China Scholarship Council (CSC) under grant CSC No.202006410017supported by the Fundamental Research Funds for National University,China University of Geosciences (Wuhan)
文摘At present,the main detection instruments for observing sporadic E(Es)layers are ground-based radars,dense networks of ground-based global navigation satellite system(GNSS)receivers,and GNSS radio occultation,but they cannot capture the whole picture of the horizontal structure of Es layers.This study employs the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension model(WACCM-X 2.1)to derive the horizontal structure of the ion convergence region(HSICR)to explore the shapes of the large-scale Es layers over East Asia for the period from June 1 to August 31,2008.The simulation produced the various shapes of the HSICRs elongated in the northwest-southeast,northeast-southwest,or composed of individual small patches.The close connection between Es layer critical frequency(foEs)and vertical ion convergence indicates that the HSICR is a good candidate for revealing and explaining the horizontal structure of the large-scale Es layers.
基金the National Natural Science Foundation of China (Grant Nos. 41474130, 41264006 and 41174129)the Specialized Research Fund for State Key Laboratories of China
文摘A double-laser-beam lidar was successfully developed in 2010 to measure the K layer over Yanqing County, Beijing(40.5°N, 116.2°E). Comprehensive statistical analyses of sporadic K(Ks) layer parameters were conducted using two years of lidar data, and the parameters of the Ks layers and their distribution obtained by the analyses are described. The seasonal distribution of Ks occurrence was obtained, with two maxima observed in January and July, respectively. The seasonal distributions of sporadic E(Es) occurrence over Beijing differ from those of Ks occurrence. However, good correlations between Es and Ks in case by case study were found. We also found that four Ks events with peak altitudes lower than 90 km were associated with large and sharp temperature increases in five comparative examples.