In order to understand the solidification process of an atomized droplet and predict the fraction solidification of droplets with flight distance during spray forming, a numerical model based on the population dynamic...In order to understand the solidification process of an atomized droplet and predict the fraction solidification of droplets with flight distance during spray forming, a numerical model based on the population dynamics approach is developed to describe the microstructure evolution under the common action of the nucleation and growth of grains. The model is coupled with droplets heat transfer controlling equations and solved for AI-4.5 wt pct Cu alloy. It is demonstrated that the numerical results describe the solidification process well.展开更多
A model for simulating the spray forming process with scanning atomizer was developed.Models for the scanning atomization and the deposition processes were coupled together in order to obtain a new description of the ...A model for simulating the spray forming process with scanning atomizer was developed.Models for the scanning atomization and the deposition processes were coupled together in order to obtain a new description of the spray forming process.The model,which is able to predict the shape of a spray-formed billet prepared with scanning atomizer,was established after analyzing the changes in droplet size and density distribution along the r-axis in the spray cone in scanning atomization.The effects of the two kinds of atomization were compared,showing that the scanning atomization is good for deposition.展开更多
Numerical simulation was performed in an atomizing chamber to investigate the movements and thermal states of the atomized metal droplets in the spray forming process. The velocity, temperature and solid fractions of ...Numerical simulation was performed in an atomizing chamber to investigate the movements and thermal states of the atomized metal droplets in the spray forming process. The velocity, temperature and solid fractions of metal droplets with different diameters and under different atomizing pressures were investigated. The results indicate that a higher atomizing pressure results in the increased flying velocity of the metal droplets and a decrease in the cone-shaped angle formed by their flight paths. Synchronously, the cooling of the metal droplets is accelerated and the time of the complete solidification process is shortened. Under the same atomization pressure, large metal droplets have a lower flying speed and a lower rate of temperature decrease in the atomizing chamber than small metal droplets. In addition, metal droplets flying along the edge of the atomizing region cool faster than those flying in the core region.展开更多
Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental meth...Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental method,computational fluid dynamics(CFD)modeling is a powerful and convenient tool for simulating the spray process.Based on the verified CFD model,different materials of atomizer were simulated to investigate the effect on droplet size and distribution in this work.The modeling result proved that the droplet size and distribution were influenced by the resistance coefficient of materials,wherein the Reynolds number could change the effect of roughness along with the change of mass flow rate on spray process.The results in this work have implication for controlling droplet size through developing new spray nozzle with different materials or surface coating.展开更多
The metal spray forming process was examined using the mathematical model simulation by Baosteel's test and developed facilities.The mathematical model comprised of the probability and statistical analysis of the dro...The metal spray forming process was examined using the mathematical model simulation by Baosteel's test and developed facilities.The mathematical model comprised of the probability and statistical analysis of the droplet mass behavior and predicted the shape and temperature distribution of the billet during the spray forming process.展开更多
文摘In order to understand the solidification process of an atomized droplet and predict the fraction solidification of droplets with flight distance during spray forming, a numerical model based on the population dynamics approach is developed to describe the microstructure evolution under the common action of the nucleation and growth of grains. The model is coupled with droplets heat transfer controlling equations and solved for AI-4.5 wt pct Cu alloy. It is demonstrated that the numerical results describe the solidification process well.
基金This work is financially supported by Program of 863 Project ( No 2006AA03Z114)Programon National Key Laboratory Foundation (No 9140C500101060C50)
文摘A model for simulating the spray forming process with scanning atomizer was developed.Models for the scanning atomization and the deposition processes were coupled together in order to obtain a new description of the spray forming process.The model,which is able to predict the shape of a spray-formed billet prepared with scanning atomizer,was established after analyzing the changes in droplet size and density distribution along the r-axis in the spray cone in scanning atomization.The effects of the two kinds of atomization were compared,showing that the scanning atomization is good for deposition.
基金sponsored by China Postdoctoral Science Foundation (20080430668)
文摘Numerical simulation was performed in an atomizing chamber to investigate the movements and thermal states of the atomized metal droplets in the spray forming process. The velocity, temperature and solid fractions of metal droplets with different diameters and under different atomizing pressures were investigated. The results indicate that a higher atomizing pressure results in the increased flying velocity of the metal droplets and a decrease in the cone-shaped angle formed by their flight paths. Synchronously, the cooling of the metal droplets is accelerated and the time of the complete solidification process is shortened. Under the same atomization pressure, large metal droplets have a lower flying speed and a lower rate of temperature decrease in the atomizing chamber than small metal droplets. In addition, metal droplets flying along the edge of the atomizing region cool faster than those flying in the core region.
基金financially supported by National Natural Science Foundation of China(21878039,21822804,and 21676047)Dalian Science and Technology Major Project(2018ZD14GX002)NSFC-Liaoning United Fund(U1608222).
文摘Spray drying,as a crucial operation in industrial production,converts solution to fine particle.The spray moiety directly affects the final particle morphology,size and distribution.Compared with the experimental method,computational fluid dynamics(CFD)modeling is a powerful and convenient tool for simulating the spray process.Based on the verified CFD model,different materials of atomizer were simulated to investigate the effect on droplet size and distribution in this work.The modeling result proved that the droplet size and distribution were influenced by the resistance coefficient of materials,wherein the Reynolds number could change the effect of roughness along with the change of mass flow rate on spray process.The results in this work have implication for controlling droplet size through developing new spray nozzle with different materials or surface coating.
基金Item Sponsored by the NSFC and the Baoshan Steel Complex of Shanghai,the Joint Fund of Iron and Steel Research(50474082)
文摘The metal spray forming process was examined using the mathematical model simulation by Baosteel's test and developed facilities.The mathematical model comprised of the probability and statistical analysis of the droplet mass behavior and predicted the shape and temperature distribution of the billet during the spray forming process.